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Introduction
Lead-acid batteries (LAB) are widely used for many in-

dustries and are the source of electric energy in every single 
vehicle. LAB are built with metal grids (25% to 30% of their 
weight), electrode paste (35% to 45%), sulfuric acid solution 
(10% to 15%), connectors and poles of Pb alloy, grid separa-
tors made up of PVC (5% to 8%), ebonite (1% to 3%) and a 
plastic case. LAB cells are composed of a Pb electrode (anode) 
and a Pb oxide electrode (cathode) immersed in a solution of 
sulfuric acid, metallic grids and connections [1], for this rea-
son, used-batteries are considered as hazardous waste.

Lead-acid battery recycling (LABR) attempts to recover Pb 
and plastic from old batteries. In the USA, 99% of the LAB is 
recycled, because the efficiency of Pb recovery in 1990 was 
up to 95% [2]. Globally, 80% of the Pb produced is destined 
for LAB manufacturing and 95% of Pb used in batteries comes 
from the recycling process. Lead recycling has economic 
and ecological advantages but some disadvantages, one 
disadvantage is the release of Pb to the environment. A 
fraction of the Pb from batteries remains in the produced 
sludge as PbSO4, PbO2, and PbO.PbSO4 [3], which can be 
disposed in the soil. Therefore, inadequate LABR process and 
residue disposal may seriously pollute soil and groundwater 
[4] as occur in some developing countries. Hence, workers 

engaged in LABR are frequently exposed to contaminants 
because they often manipulate the material by hand without 
safety equipment [5]. Lead is considered as the second 
priority risk substance at sites in the USA National Priorities 
List [6]. The world most seriously polluted sites (in 2012 and 
2015) are commonly related to the LABR industry and Pb 
deposition [5,7].

The present research involves the soil of a LABR facto-
ry which was closed by the Mexican Environmental Agency 
(MEA), due to complaints from residents of the neighbor-
hood. This agency suspected high Pb concentrations in soil. 
Nevertheless, there were no reports, files or other available 
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Heavy metal soil concentrations
Total metal concentrations were determined after acid di-

gestion in HNO3-HClO4-H2O2 (3:1:1) mixture (modified 3050B) 
[19]. The extractable metals were determined with DT-
PA-TEA-CaCl2 solution (DTPA-extractable) in a 1:5 soil: Solu-
tion ratio [20]. Bioavailability index [21] of the metals was cal-
culated as follows: [(DTPA-TEA-CaCl2 extractable concentra-
tion/total metal concentration)*100]. Saturated paste extract 
was prepared to measure the soluble salts and metals in soil.

Fractionation of metals was analyzed by sequential ex-
traction following the Pagnanelli modified method [22]. The 
fractions obtained were: Exchangeable (EX); bound onto Fe 
and Mn oxides (FeMn); weakly bound to OM (WOM); firmly bound 
to OM (SOM) and linkedto sulfide phase (S). The last stage of 
the fractionation was the residual fraction (R): Acid digestion 
of the samples with 5 mL of HNO3-HClO4-H2O2 (3:1:1) mixture. 
Metals were quantified by flame atomic absorption spec-
trometry (Perkin Elmer model 3110).

Geostatistical analysis
Standarized semivariogram was calculated to describe 

the way the spatial variation of Pb and Cu soil concentrations 
changes along the distance separation any two points varies. 
Ordinary block Kriging was used to estimate the values at 
unsampled places, and their validations were performed 
with semivariograms. Graphic representations of Pb and Cu 
concentration in all the terrain were generated (Figure 1). The 
statistical package used was R 3.1.3 with the libraries gstat, 
sp, maptools, gr Devices and raster [23].

Data analysis
To evaluate the potential risk of Pb, Cu and Cd accumulat-

ed in the top soil, the potential mobile fractions (PMF) weakly 
bound to soil components was calculated. High values sug-
gested the tendency entering to the food chain.
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Speciation in saturation paste extracts was carried out 
simulating the soil solution using Geochemist’s Work bench 
10 software. Correlations were performed with Spearman 
or Pearson method depending on the assumptions satisfied 
by the variables. P-values were used to validate these 
correlations. The statistical software used was R 3.1.3 [23].

Results
Contrasting to the landscape, the soil was completely 

naked, even this very close to the river; no vegetation was 
growing, with salt spots on the soil surface.

Soil chemical properties
Soil pH was alkaline, where 68% of the samples had pH 

> 7 and 9% pH > 8.5 (Table 1). The ground showed oxidizing 
conditions (ORP: 300-600 mV; Figure S1).The soil was saline 
(EC > 4 dS m-1). In high proportion (55%) of the samples the 
PO4

3-, SO4
2-, Cl- and Na+ concentrations were high, contributing 

to the EC increment. Taking into account SAR and EC values at 

information about the procedure used for recycling neither 
the batteries nor the protocol for waste management. As a 
result, the MEA needs an environmental assessment of the 
defunct LABR site.

Precise information about the distribution and dynamics 
of the pollutants in the soil is required to define a remediation 
strategy. This study aimed to assess the concentrations of 
metals and salts and their spatial variability in the soil at a 
defunct LABR factory site located in Tepetlaoxtoc, Mexico.

Materials and Methods

Soil sampling
The study area is located at central Mexico (19.550831, 

-98.794714) in a former recycling factory of lead-acid 
batteries; the factory was near to the Hondo creek. The 
soil survey was carried out using a systematical sampling 
procedure [8]. A grid of 5 × 5 m was laid out and at each 
intercept composite soil samples (5-20 cm depth) were taken 
(a total of 54 samples). Six additional composite non-polluted 
soil samples were taken near to the LABR site to determine 
natural soil heavy metal concentrations.

Fertility and soil solution analyses
Immediately after soil collection, oxide-reduction poten-

tial (ORP) was measured in soil samples in a 1: 2.5 soil: Water 
ratio slurry with a pH meter (Thermo Orion 420 A) using an 
ORP electrode. The equipment was calibrated using Light’s 
solution [9]. After ORP determination, the soil was air-dried 
and sieved (≤ 2 mm) before other analyses.

Soil samples were air dried and sieved for the analysis of 
soil features, Pb and Cu concentrations. Plant available nutri-
ents: Phosphorus [10], sulfate-[11] and N (KCl extraction and 
Kjeldahl distillation) [12] were measured. Besides, total car-
bonates was determined by the calcimeter method [13] and 
organic matter (OM) by the loss on ignition procedure [14].

Electrical conductivity (EC), pH and oxide reduction po-
tential (ORP) were measured as mentioned above in liquid 
extracts from saturation pastes (soil solution) [15]. The wa-
ter-soluble ions were determined: SO4

2- (modified 9038 meth-
od) [16], PO4

3- [10], HCO3
-, CO3

2-, Ca and Mg [17], Cl, Na and 
K (argentometric and flame photometrically methods) [18]. 
Analysis of PO4

3- and SO4
2- in this section differs from those de-

termined in Section 2.2.1, as the soil solution contains soluble 
compounds which react in the liquid phase of the soil.

Heavy metal concentrations were also determined in the 
soil solution before chemical speciation simulation, mimick-
ing the soil solution reactions. Sodium adsorption (SAR) and 
potassium adsorption (PAR) ratios were calculated to deter-
mine the relationship between Na+, K+, Ca2+, and Mg2+ as fol-
lows:

(1) 2 2
:  

 + Mg
2

NaSAR
Ca

+

+ +  (2) 2 2
:  

 + Mg
2

KPAR
Ca

+

+ +

Where: Na+, K+, Ca2+ and Mg2+ are the concentrations of 
these cations (milliequivalents L-1).
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ples, from 0 mg kg-1 to 5 mg kg-1of NH4
+ and from 0 mg kg-1 to 

5 mg kg-1 of NO2
- + NO3

-. However, NH4
+ was detected only in 

samples from the north part of the field. The site reaction was 
alkaline and have poor fertility [24,25].

Total heavy metal concentrations
The total metal concentration decreased as follows 

Pb>Fe>Cu>Zn>Mn>Ni>Cd (Table 2). These values were higher 

the LABR site, 57% of the soil surface was saline-sodic; 34% is 
sodic and only 9% was not affected by salts nor Na (Table 1).

Organic matter (OM) content varied from 0.8% to 13.4%.
The carbonate content was from 0.2% to 3.6%; the highest 
concentrations were found on the eastern part of the site. 
Plant-available PO4

3- and SO4
2- were detected in high con-

centrations; they ranged from 19 to 1,354 mg kg-1 and 3.8 to 
34,086 mg kg-1, respectively. Available N was low in all sam-

Table 1: Salt concentrations and electrochemical properties in soil solution (saturation extracts) from a defunct LABR site. The proportions 
of samples exceeding recommended values are presented in brackets.

Variable Recommended Value in soil Variable Recommended Value in soil (mg L-1)

pH 6.5-7.0 6.0-9.4 (68%)a Mg2+ See PAR and SAR 0-119

EC (dS m-1) < 4 0.3-65.3 (56%)a Cl- < 10 mg L-1 44.3-8.050 (47%)a

ORP (mV) - 212-374 CO3
2- - 0-552

PO4
3- (mg L-1) - 4.1-7.2 HCO3

- - 0-420

SO4
2- (mg L-1) 57 88-47.130 (100%)a Na+ SAR < 12 74-33.101 (94%)b

Ca2+ (mg L-1) See PAR and SAR 1-178 K+ PAR = 6-8 2-256 (100%)c

n = 34, terrain surface = 1024 m2.
EC: Electrical conductivity.
ORP: Oxidation reduction potential
SAR: Sodium adsorption ratio.
PAR: Potassium adsorption ratio.
aPercentage of samples above the average in soil solution according to normal values presented by Marschner and Rengel [24].
bPercentage of samples above the maximum recommended SAR value [31].
cPercentage of samples outside the recommended PAR value [25].

Table 2: Metal concentrations (mg kg-1) and percentage (in brackets) of soil metal fractions of the defunct LABR site in Mexico.

Fraction Pb Cu Mn Zn Cd Fe Ni

EX 5.666-284.580 0-248 11-156 1-1.984 0-11 1-268 2-63

(43-97) (0-35) (6-31) (0-85) (0-63) (0-3) (8-44)

FeMn 59-46.278 0-15 30-221 2-339 0-16 74-30.130 7-181

(0-21) (0-63) (27-69) (2-46) (0-40) (2-51) (17-46)

WOM 45-73.642 2-18 3-95 1-132 0-5 6-21.335 1-62

(0-30) (5-90) (1-17) (3-70) (2-37) (0-53) (3-44)

SOM 33-7.506 0-1.063 0-1 0-24 0-3 1-13 2-7

(0-0.2) (0-25) (0-1) (0-4) (3-29) (0-0) (1-16)

S 1.494-147.690 5-1.757 8-168 7-194 0-19 1.442-19.554 1-90

(2-39) (2-74) (8-34) (3-42) (8-34) (7-94) (3-30)

R 64-30.555 0-1.063 25-250 9-65 1-5 27-10.629 2-29

(0-22) (1-13) (7-36) (1-73) (8-35) (1-62) (4-21)

Total 10.792-444.105 9-3.911 94-696 24-2.337 5-57 2.133-59.606 24-408

Total NP 306 ± 30 5 ± 2 33 ± 9 18 ± 1 3 ± 2 1.000 ± 374 28 ± 12

Kabata-Pendias1 27 14-109 411-550 60-89 0.41 35,000 13-37

Kabata-Pendias2 50-300 60-500 - 200-1.500 2-20 - 75-150

EX: Exchangeable; FeMn: Bound onto Fe and Mn oxides; WOM: Weakly bound to organic matter; SOM: Strongly bound to organic matter; S: 
Bound to sulfide phase; R: Bound to the residual phase.
Total NP: Soil heavy metal concentrations in the non-polluted surrounding area of the LABR site. 
1Normal total soil concentrations of elements [32].
2Maximum allowable total concentrations for heavy metals in agricultural soils [32].
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than the concentrations of the non-polluted sites in the vicin-
ity of the LABR site; and up to 1,451, 782, 19 and 15 times for 
Pb, Cu, Cd, and Ni, respectively (Figure 1a). The soil is pollut-
ed with Pb, Fe, Cu and Zn. Apparently, these elements were 
introduced as a result of the dispersion of the battery slurry 
(Figure 1).

Heavy metal fractionation
The highest Pb concentrations were observed in the ex-

changeable fraction (Table 2). The general sequence in soil 
fractions decreased in the following order: PbEX>PbS>PbWOM-

>PbFeMn>PbR>PbSOM. Exchangeable Pb was spatially distributed 
with a pattern similar to total Pb concentrations. Lead con-
centration decreased gradually from the south to the north 
side of the site (Figure 1a, Figure 1b and Table 2).

Positive correlations of PbEX with SO4
2- (0.528, p = 0.024), 

PO4
3- (0.749, p = 0.001) and OM (0.641, p = 0.004) were found. 

Strongly bound to OM Pb was correlated positively with pH 
(0.492, p = 0.039) and similarly PbFeMn with SO4

2- (0.510, p = 
0.024). PbWOM ranged from 0.1% to 31.6%. In contrast, low 
concentration of PbSOM was observed (< 2% of total Pb).

Copper concentrations showed the following distribu-
tion: CuS>CuWOM>CuFeMn>CuR>CuEX>CuSOM. A positive correla-
tion was found between CuEX and soil OM content (0.71, p = 
0.001); CuFeMn with OM (0.72, p = 0.001) and with SO4

2- (0.79, 
p = 0.001). Similarly, CuSOM was correlated with OM content 
(0.67, p = 0.002) and CuS with SO4

2- concentrations (0.680, p 
= 0.001).

Concentrations of Cd decreased as follows: 
CdS>CdFeMn>CdEX>CdWOM = CdR>CdSOM; where CdEX was up to 
63% of the total Cd. Concentrations of Fe and Mn forming 
oxides (FeFeMn and MnFeMn) varied from 74 to 30,130 mg kg-1 
for Fe and 30 to 221 mg kg-1 for Mn. Up to 21% and 63% of 
total Pb and Cu was bound to Fe and Mn oxides (Table 2).

Nickel concentration in soil fractions decreased as follows 
NiFeMn>NiS>NiEX>NiWOM>NiR>NiSOM. The Zn concentration 
followed this order: ZnEX>ZnFeMn>ZnWOM>ZnS>ZnR>ZnSOM, where 
ZnEX ranged from 24 to 2,337 mg kg-1.

DTPA-extractable metals
DTPA-extractable concentrations were variable: Pb con-

centrations varied from 154 to 12,000 mg kg-1 and Cu ranged 
from 0.01 to 1,936 mg kg-1, with similar distribution patterns 
(Figures 1c and Figure 1d). The highest values were at the 
south of the site. DTPA-extractable Cu concentrations cor-
related negatively with OM contents (-0.722, p = 0.005). Bio-
availability index ranged 1% to 66% for Pb, 1% to 54% for Cu, 
1% to 25% for Zn, 1% to 8% for Ni, 0% to 10% for Mn, 0% 
to 25% for Cd and 0% to 0.4% for Fe. Besides, bioavailability 
index of Pb was negatively correlated with OM (-0.570, p = 
0.021). Low concentrations of DTPA-extractable Fe, Mn, Zn, 
Ni, and Cd were found in all samples; soluble concentrations 
of Mn, Zn, Fe and Cu in some samples were lower than detec-
tion limits.

Chemical speciation of Pb and Na in the soil 
solution

Soluble Pb concentrations ranged from 0.024 to 4.650 mg 
kg-1, where higher concentrations were detected in the south-
ern part of the site (Figure 1e). The Pb2+ ion was present in all 
pH values tested and was the predominant species at low pH. 
SO4

2-, CO3
2- and Cl- had a strong influence on Pb speciation in 

solution. Formation of Pb-Cl complexes can be observed at 
the highest Pb concentrations, and Pb-SO4

2- at the lowest pH 
values. In the soil solution with the lowest Pb concentrations 
(at pH = 8.25), 100% of the Pb was bound to CO3

2- (PbCO3 (aq) 
and Pb(CO3)2

2), (Table S1).

The highest Na concentration in soil solution (33,101 
mg kg-1) corresponded to the lowest pH (6.0) at the site. Na 
was present mainly as a free ion (Na+ = 97%) and in minor 
proportion was associated with Cl-, CO3

- and OH-. The lowest 
sodium concentration was observed at the higher pH (8.5): 
The free ion was predominant and the second species was Na 
associated to Cl-, CO3

2- and PO4
3-.

Discussion

Soil fertility, pH and salinity
Low concentrations of N (0 to 5 mg kg-1) and OM (1.7%) 

showed poor soil fertility [25]. Therefore, it is needed to 
amend soil to support plant growth. The soil was alkaline (pH 
up to 9.4, Table 1) despite the parent material of the area 
(welded tuff and volcanic ashes) [26]. High concentrations of 
Cl- at the site (8,050 mg kg-1; Table 1) increase pH, apparently 
because Cl- replaces OH- ions on positively charged sites of soil 
particles, and OH- remains free [27]. High Na concentrations 
(33,101 mg kg-1) can also contribute to alkalinizing the soil.

The source of Na is probably for the use of NaOH to 
neutralize H2SO4 in the slurry to Na2SO4 during the SO4

2-

recuperationin LAB recycling [28]. Sodium bicarbonate 
(Na2CO3) is used to transform PbSO4 to PbCO3 [29]. These 
processes also explain the high SO4

2- concentrations (up 
to 47,130 mg L-1, Table 1). Inadequate management of old 
batteries and Na compounds used for recycling and scant 
disposal of residues were performed by the LABR factory 
which operated at the site. Furthermore, it is well known 
that Na+ excess promotes soil particles deflocculation and 
breakdown of aggregates [14]. Particle dispersion influences 
Pb mobilization by wind or rain which may easily transport 
the soil particles.

Phosphorus concentrations (4.1-7.2 mg L-1) were above 
the typical soil concentrations (0.05 to 0.5 mg L-1) [30]. Simi-
larly, plant available PO4

3- concentration (19 to 1,354 mg kg-1) 
were also excessive (> 50 mg kg-1) [30]. These concentrations 
may be due to the use of H3PO4 as the electrolyte in some 
batteries. Other important parameters concerning soil salini-
ty are SAR and PAR. At the LABR site, these parameters were 
above recommended values (Table 1). High SAR values sug-
gest that there is not enough Ca and Mg to compete with Na 
on the exchange surfaces in the soil [15]. That means 85% 
of the samples had SAR > 102, which is the maximum value 
proposed for very tolerant crops [31]. Moreover, PAR gives 
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LABR soil management.structural stability and K retention in soils. Therefore, the 
poor balance of Na, K, Ca and Mg ions in the site difficult the 
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Figure 1: Spatial distribution of a) DTPA-TEA-CaCl2 extractable Pb; b) exchangeable Pb; c) water-soluble Pb; d) total Pb and; e) DTPA-
TEA-CaCl2 extractable Cu. Colors in right bars represent the concentration (mg kg-1). The semivariograms are shown at the right side; 
x-axis represents the distance in meters and y-axis the semivariance (some semivariances correspond to transformed values to achieve 
assumptions). 
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between OM and CuEX (-0.71, p = 0.001) can be explained in 
terms of the high affinity of Cu by OM. Cu is strongly associat-
ed, so Cu electrostatically retained decreased. The PMF was 
lower than 20.6%. Other metals found in high concentration 
were ZnEX (1,984 mg kg-1) PbEX (284,580 mg kg-1) NiEX (63 mg 
kg-1) and CdEX (11 mg kg-1; Table 2). The PMF was also low (2.8 
to 17.2%). Cadmium is considered a very hazardous metal 
due to its toxicity; but, an important proportion of Cd is as-
sociated to OM: CdSOM (up to 37%), CdWOM (up to 29%), which 
ameliorates the potential effects of Cd. In this soil the PMF 
was high (4.1 to 39.8%). Similarly, Ni concentrations bound 
to OM (NiWOM up to 62 mg kg-1 and NiSOM up to 7 mg kg-1) may 
contribute to the depletion of NiEX concentrations.

Furthermore, heavy metals concentrations bound to Fe 
and Mn oxides were up to 21%, 63%, 46%, 40% and 46% 
of their total concentrations for Pb, Cu, Ni, Zn, Cd, and Ni 
respectively (Table 2). Apparently, Fe and Mn oxides may be 
contributing to heavy metal fixation in LABR site, which has 
been reported before [42].

DTPA-extractable metals
A similar spatial pattern of Pb (DTPA-extractable, 

extractable, water-soluble and total) and DTPA-extractable 
Cu (Figure 1) shows that south part of the site was the most 
affected by heavy metal pollution. Possibly due that to the 
slurry disposal was performed at the south side of the terrain.

The negative correlation found between Pb bioavailability 
index and OM content (-0.570, p = 0.021) may be due to the 
influence of OM on Pb bioavailability in LABR soil. Lead can 
be strongly adsorbed by OM and fixed as non-extractable 
forms or complexed with humic substances [43]. The addition 
of organic amendments to the soil may be a strategy to 
reduce Pb availability. Nevertheless high DTPA-extractable Pb 
concentrations are observed in the LABR site; which may be 
due to the saturation of OM adsorbent sites.

Pb and Na chemical speciation in the soil solution 
Oxidizing (ORP: 300-600 mV; Table 1) and alkaline (pH > 

7.4) conditions were predominantly observed in soil samples. 
Although the presence of [PbOH]+ and [PbO2] species [43] 
in LABR soil solution was expected. The pH only allows the 
PbOH+ species (3.51% of the total Pb in solution) in the paste 
saturation extract (Table S1).

The Pb concentration in soil solution was low the signif-
icant proportion of this metal was in the saturation paste 
extract (up to 85% of the Pb in solution) remained as a free 
divalent ion (Pb2+). Other chemical species such as PbOH+, 
Pb(CO3)2

2-, Pb(OH)2(aq) and Pb(SO4)
2- were in minor con-

centrations. The occurrence of different Pb species is re-
lated to Pb mobility in soil. For instance, Weng [44] found 
that Pb2+ is less adsorbed on soils than Pb(OH)+. In the same 
way, Nedwed and Clifford [34] mentioned that CO3

2- or CaO 
could lead to the formation of Pb3(CO3)2(OH)2, PbCO3 or Pb-
4SO4(CO3)2(OH)2; these species could reduce Pb mobility. In 
LABR site, CO3

2- was found in all samples and Pb associates 
with the mentioned anion at high pH (8.25 and 9.38; Sup-
plementary Table 1). In contrast, in the soil with the lowest 

Total metal concentrations
Total concentrations of Pb, Cu, Cd, and Ni in the LABR soil 

were up to 8,882, 50, 29 and five times higher, respectively 
than values referenced by Kabata-Pendias [32] for agricultural 
lands (Table 2). Possibly, high Cu, Cd and Ni concentrations 
(up to 3911, 57 and 408 mg kg-1, respectively) come from 
alloys, batteries grids, and poles. In the same way, total Pb 
concentrations (up to 444,105 mg kg-1) exceeded regulatory 
limits of the country by 27 - 1110 times. The thresholds for 
residential land use in the USA range from 500 to 1000 mg 
kg-1. While in Canada this is 375 mg kg-1, in The Netherlands is 
between 50 to 600 mg kg-1 and in England is 500 mg kg-1 [33].

Hence, total Pb concentrations at LABR soil are compara-
ble with soils polluted by LABR in other regions of the world. 
Some of the most polluted sites have up to 400,000 mg kg-1 

(40%) of Pb [5,7]. Similarly, Mohammed, et al. [4] found a soil 
containing up to 70% of Pb. Wasay, et al. [34] observed 24,600 
mg kg-1 (2.46%) of Pb in soil due to the disposal of wastes of 
a LABR in Canada. In the same way, Yeh, et al. [35] reported 
a value of 3,590 mg kg-1 Pb in soil near a LABR factory in Tai-
wan. Rodríguez, et al. [36] found 1,050 mg kg-1 of Pb total 
concentration near a LABR facility in Argentina. Total soil Pb 
concentrations in LABR site makes necessary intervention to 
reduce the risk for public health and environmental damage.

The observed total Pb, Cu, Ni, Cd and Zn concentrations in 
LABR soil suggest the impact of the free recycling process and 
inadequate waste management from this factory. Further-
more, the spatial total Pb distribution (Figure 1a) shows that 
the south zone of the site was the most polluted. Probably 
used slurry was disposed of in this part of the terrain.

Soil heavy metals fractionation
High PbEX concentrations in the soil (up to 284,580 mg kg-1; 

Table 2) makes this metal the main risk in the site. The major 
Pb proportion was found in an exchangeable form (44 to 
97%). In another soil affected by LABR, Rodríguez, et al. [36], 
found up to 640 mg kg-1 of PbEX at approximately 100 m away 
from a LABR facility. The potential mobile fraction (PMF) of 
lead was between 5.7 and 59.3%, which suggested easy enter 
to the food chain.

Organic matter content, available SO4
2-(0.528, p = 0.024) 

and PO4
3-(0.749, p = 0.001) concentrations were correlated 

positively with PbEX. This can indicate the presence of available 
forms of Pb bound to the mentioned anions. The positive 
correlation between PbEX and OM (0.641, p = 0.004) probably 
shows an electrostatic Pb-OM association. The OM ability 
to sequestrate heavy metals may explain the correlation, 
which has been reported [37,38] and can also explain the Pb 
concentrations observed as PbSOM (up to 7,506 mg kg-1) and 
PbWOM (up to 73,642 mg kg-1). A Pb proportion was found 
as PbFeMn (up to 21% of the total Pb). The behavior of heavy 
metals with stable oxidation states depends indirectly on Fe 
compounds [27,39]. Pb may be adsorbed on the Fe and Mn 
oxides surfaces [40,41]. Pb fixation on oxides reduces PbEX 
concentration in the LABR soil.

Regarding Cu fractionation, the negative correlation found 
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pH (6.05), Pb was associated predominantly to SO4
2- (55.76% 

and 39.27% of the total Pb in the solution for Pb(SO4)
2- and 

PbSO4(aq) respectively). However, despite high SO4
2- concen-

tration in saturation paste extract (47,130 mg kg-1), low con-
centrations of Pb(SO4)

2- and PbSO4(aq) (1.27 and 0.89 mg 
kg-1, respectively) may be explained by the low solubility of 
compounds formed between Pb and SO4

2-; and Pb competi-
tion with Ca2+, Na+ and K+, cations with more affinity for SO4

2-. 
Other possible reaction of SO4

2- is the reduction as sulfides, 
which can sequestrate heavy metals. Adsorption and precip-
itation of Pb on SO4

2- compounds are important buffer mech-
anisms for fixation and controlling the migration of Pb [45]. 
The fractionation shows a high proportion of Pb bound to 
sulfides (PbS); up to 39% of the total.

Sodium ion was the predominant species in soil solution 
(Table S1), but Na associated with CO3

2-, SO4
2-, PO4

3-, Cl- was 
also present. There is scarce information regarding the effect 
of Na on speciation in soils metal bioavailability. Ghallab and 
Usman [46] found increased concentrations of Cd in solution 
due to NaCl additions; apparently, Cd was displaced by Na 
from exchange surfaces. In LABR soil solution, NaCl was 
present in high concentration (up to 943.8 mg L-1). Hence, the 
influence of Na on heavy metals solubility should be further 
studied in LABR soil.

High Na+, Cl-, PO4
3- and SO4

2- concentrations (Table 1) in-
crease soil solution ionic strength (IS) in the LABR site. The 
IS ranged from 0.005 to 1.185 M values. While, in non-pol-
luted soils, the IS ranged from 0.003 to 0.016 M [47]. Ionic 
strength leads to an increment of metal solubility because 
cations compete with metals for exchange sites and forma-
tion of metal-salt species with no charge or negative charge 
such as metal -Cl2

o, metal -Cl3
- and metal -Cl4

- complexes [48]. 
At the LABR soil, some Cl- metal species were found (Table 
S1). Hence, Na+, Cl-, PO4

3- and SO4
2- could contribute to metal 

solubility.

Conclusions
The LABR activities at this site resulted in a heavily pol-

luted soil due to: 1) Very high total Pb concentrations; which 
makes this site similar to others reported in the literature as 
the most world polluted sites by Pb; 2) Elevated total con-
centrations of Cu. High DTPA-extractable and exchangeable 
concentrations of Pb and Cu are very risky for plant estab-
lishment; and 3) Alkaline conditions and high concentrations 
of plant available SO4

2-, PO4
3- in the soil solution, as well as 

water-soluble Cl- and Na+. These hazards represent a poten-
tial risk to human health and the environment. One possible 
method to reduce concentrations of salts and heavy metals 
from solution is by leaching the soil. However, the process 
might demand large volumes of water and the resulting 
leachate will require treatment.

The fertility of the soil should be improved, due to the 
low N concentration. An organic addition could improve 
physical and chemical soil conditions, and fertility, besides 
could reduce availability and mobility of heavy metal. At this 
time, long time phytoremediation and biofuel experiments in 
the LABR site are being performed taking into account the 
information provided by the present research.
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Figure S1: Curves of pH-Eh (oxidation-reduction) and values observed in saturation paste extracts (soil solution) from a defunct LABR 
site. Vertical dotted lines represent the range of pH commonly found in soils [49].

Table S1: Speciation Pb and Na for contrasting conditions of paste 
saturation extracts from the defunct LABR soil.

Species Concentration in 
solution  (mg L-1)

Percentage of the 
total in solution (%)

Highest Pb concentration     4.65 mg L-1, pH = 6.18

Pb2+ 4.00 85.97

PbCl+ 0.62 13.34

PbCl2(aq) 0.03 0.7

Lowest Pb concentration     0.024 mg L-1, pH = 8.25

PbCO3(aq) 2.14 e-2 90.2

Pb(CO3)2
2- 2.32 e-3 9.8

Pb in the highest pH    2.65 mg.L-1, pH = 9.38

Pb(CO3)2
2- 1.39 52.41

PbCO3(aq) 1.09 41.10

PbOH+ 9.31 e-2 3.51

Pb(OH)2(aq) 7.310 e-2 2.76

Pb2+ 3.02 e-3 0.11

PbHCO3
+ 2.81 e-3 0.10

Pb in the lowest pH   2.274 mg L-1, pH = 6.05
aq: Aqueous species.

Pb(SO4)
2- 1.27 55.79

PbSO4 (aq) 8.93 e-1 39.27

Pb2+ 9.16 e-2 4.03

PbCl+ 7.88 e-3 0.35

PbHCO3
+ 1.27 e-2 0.56

At the highest Na concentration     33.101 mg L-1, pH = 6.05

Na+ 32.730 97.18

NaCl (aq) 943.8 2.80

NaHCO3 (aq) 3.8 0.01

NaCO3
- 1.7 e-3 < 0.01

NaOH(aq) 1.3 e-4 < 0.01

At the lowest Na concentration     74 mg L-1, pH = 8.5

Na+ 73.8 98.98

NaHCO3(aq) 0.4 0.53

NaHPO4
- 1.70 e-1 0.22

NaCl (aq) 0.1 0.13

NaCO3
- 8.20 e-2 0.11

NaH2PO4(aq) 3.80 e-3 < 0.01
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