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Introduction
Researchers have studied the kinematics of several joints 

including universal and joints used for couplings such as the 
work of Shah and Patil, [1], and Williams [2]. Studying the 
singularities have taken researchers interest for decades and 
was reported by Williams II [3]. They used different analytical 
methods and simulation models Arora [4], Jawale and Thorat 
[5]. Others have tried to control joints motion to overcome 
singularity problems associated with those types of joints 
such as the work of Han and Park [6]. Applications of universal 
joints and 3 UPU manipulators have been reported by Binbin, 
Zengming, and Kai [7].

The study of omnidirectional manipulators has been 
conducted for kinematics, modeling, and simulation for using 
those joints in autonomous mobile robots Sillas, Hurtado, 
Vargas, Reséndiz, and Tovar [8], Djebrani, Benali, and 
Abdessemed [9].

Ongoing research is being reported for the design of 
parallel universal joints using deterministic approaches such as 
the work of Yan, Yu and Zhao [10] or by approximate methods 
such as finite element Cheng, Wang, Yang and Yang [11].

Design and kinematic analysis are also being reported in 
the literature as an active field of research Pan, Chen, Kang 
and Wang [12]; Lin, Wang, Zhang and Jiang, [13].

The Omni-Joint is a mechanical joint composed of two 
symmetrical halves. It can move in any direction at any instant 
on a wide range of motion and works as a constant velocity 
flexible coupling with a deviation angle greater than 90°. It is 
only has one singularity posture, if the deviation angle is 180°. 
The Ordinary 2 DoF joint and the Hooke’s joint are commonly 
used for robotic joints.

The coordinate system used for the work-space in this 
paper is the spherical coordinate system, θ is deviation angle, 
φ is the azimuth angle as shown in Figure 1.

The Omni-Joint has three Configurations:

Configuration-II was first introduced by Duta, Opera, and 
Stanisic [14]. It only has one pair of arcs with only one hinge as 
shown in Figure 2.

Configuration-III was also first introduced by Duta, Opera, 
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Figure 1: Work-space coordinate system.

         

 
Figure 2: Omni-Joint Configuration-II [14].

         

 
Figure 3: Omni-Joint Configuration-III [14].

         

Figure 4: Omni-Joint Configuration-I [16].
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and Stanisic [14]. It has two pairs of arcs. The angle between the hinges connecting the arc parts is always 90 degrees as shown 
in Figure 3.

Omni-Joint Configuration-I was first introduced by AboZaied and El Saeid [15]. It has two pairs of arcs (A1-1 & A1-2, and A2-1 
& A2-2). The angle between the hinges (H1 and H2) connecting the arc parts is variable as shown in Figure 4.

Note that, for the Omni-Joint Configuration-I there exist four combinations of degrees of freedom to be controlled:

•	 The angles of both the arcs, as shown in Figure 5, which is the focus of this paper.

•	 The angle of an arc of one of the pairs, and the hinge connecting this pair.

•	 The angle of an arc of one of the other pairs, and the hinge connecting this pair.

•	 The angles of both hinges.

For the Omni-Joint Configuration-II there exists one combination of degrees of freedom to be controlled:

•	 The angle of an arc, and the hinge connecting this pair.

For the Omni-Joint Configuration-III there exist four combinations of degrees of freedom to be controlled:

•	 The angles of both the arcs.

•	 The angle of an arc of one of the pairs, and the hinge connecting this pair.

•	 The angle of an arc of one of the other pairs, and the hinge connecting this pair.

•	 The angles of both hinges.

Methodology and Procedure

Omni-Joint Configuration-I:
1) Forward and Inverse Kinematics Equations: Figure 5 shows the shape of the Omni-Joint Configuration-I. With two degrees 

of freedom; βs and ζs, for pointing the joint in space.

Figure 6 shows the Omni-Joint Configuration-I, with the coordinates of the world-space θ & φ.

Figure 7 shows the Omni-Joint bent. It also shows the relative positions of work-space variables; θ and φ, and the joint-space 
variables βs and ζs. Configuration-I of Omni joint is not an open chain mechanism; hence D-H table is not used to find the forward 
kinematics. Instead a geometrical method is used. Plane N is parallel to the X-Y plane and exist any place along the Z-axis below of 
origin point C. Plane P is the plane where the deviation angle θ is measured. Plane M is formed by the hinges H1 and H2 of both 
arc pairs. Hence plane M is a mirror plane, where both halves of the joint are symmetrical about. This means that when plane M 
inclines, it forms an angle θs with the plane N, which is half the value of θ. This is due to the fact that the angle that lies between 
any two planes is equal to the angle formed by the two normal to these planes. The distance between the center point C and 
plane N is taken to be (aC). The value of (aC) is arbitrary as the location of plane N is along the Z-axis is irrelevant. Regardless 
of the value of (aC), the relations between all the angles remain intact. The value of (aC) is used to derive the mathematical 
equations, upon derivation the variable of (aC) is cancelled out automatically. This is the same for all the distances shown in 
Figure 7. Angle s is measured in the counterclockwise direction about the Y-axis. Angle ζs is measured in the clockwise direction 
about the X-axis.

Forward kinematics:

As mentioned:

	
1
2sθ θ= 				          							                  (1.1)

From the geometry:

	 tan( )s
ac
ab

θ = 				          							                  (1.2)

From the triangle :aCd∆  

	
( )tan s

acad
β

= 				           							                  (1.3)

From the triangle :aCe∆
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Figure 5: Omni-Joint Configuration-I and its degrees of freedom.

         

Figure 6: Omni-Joint Configuration-I and the world-space 
degrees of freedom.

         

Figure 7: Joint-space and Work-space variables.

         

Figure 8: Ordinary joint joint-space and work-space.

	 ( )tan s

aCae
ζ

= 				          							                  (1.4)

From the triangle ade∆  and applying Pythagoras:

	
2 2

de ad ae= +
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Substituting eqn.1.3 and eqn.1.4 in the previous equation

	
( ) ( )

2 2

tan tans s

aC aCde
β ζ

   
= +      

    	       							                  

(1.5)

From the triangle ade∆  and the concept of triangles similarity:

	
ab ad
ae de

=

Substituting eqn.1.3 and eqn.1.4 in the previous equation

	
( ) ( )

2

. tan . tan
ss

Cab
de β ζ

= 		        							                  (1.6)

Substituting eqn.1.6 in eqn.1.2

	
( )

2

. . tan . tan( )
tan( ) s s

s

aC de

ac

β ζ
θ =

Substituting eqn.1.5 in the previous equation

	 ( ) ( )
( ) ( )

2 2

2

tan . tan
tan( ) .

tan tan
s s

s
s s

aC aC
ac

β ζ
θ

β ζ
   

= +      
   

Substituting eqn.1.1 in the previous equation and simplifying

	 ( ) ( ) ( )2 2tan / 2 tan tan
ssθ β ζ= + 	       							                  (1.7)

	 ( ) ( )( )1 2 22 tan tan tans sθ β ζ−= + 	       							                  (1.8)

From the triangle :ade∆

	 ( )sin ab
ae

φ =

Substituting eqn.1.2 and eqn.1.4 in the previous equation

	 ( ) ( )
( )

tan
sin

tan
s

s

ζ
φ

θ
= 			         							                  (1.9)

From the triangle ade∆ :

	 ( )cos ab
ad

φ =

Substituting eqn.1.2 and eqn.1.3 in the previous equation

	 ( ) ( )
( )

tan
cos

tan
s

s

β
φ

θ
= 			       							                 (1.10)

From eqn.1.9 and eqn.1.10:

	 ( ) ( )
( )

tan
tan

tan
s

s

ζ
φ

β
= 			       							                 (1.11)

	
( )( )
( )( )

1 tan
tan

tan
s

s

ζ
φ

β
−

 
=   

 
		      							                (1.12)
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From eqn.1.8 and eqn.1.12, we get the forward kinematics equation:

	

( ) ( )( )
( )( )
( )( )

1 2 2

1

2 tan tan tan

tan
tan

tan

s s

s

s

θ β ζ

ζ
φ

β

−

−

 = +
  
  
 =      

        							                     (1)

Inverse kinematics:

From the geometry:

	
( )

( )

tan

tan . .

s

s

ac
ad
aC ab aC ab
ad ab ab ad

β

β

=

= =

Taking into consideration that:

	 ( ) ( )tan coss
aC aband
ab ad

θ φ= =

	 ( ) ( ) ( )tan tan .coss sβ θ φ=
		       							                    

(2.1)

	 ( ) ( )( )1tan tan .coss sβ θ φ−=
		        							                  

(2.2)

From the geometry:

	 ( )tan s
aC
ae

ζ =

	 ( )tan . .s
aC ab aC ab
ae ab ab ae

ζ = =

Taking into consideration that:

	 ( ) ( )tan sins
aC aband
ae ae

θ φ= =

	 ( ) ( ) ( )tan tan .sins sζ θ φ= 	                							                          (eqn.2.3)

	 ( ) ( )( )1tan tan .sins sζ θ φ−= 	                								           (eqn.2.4)

From eqn.2.2 and eqn.2.4, we get the inverse kinematics equation:

	
( ) ( )( )
( ) ( )( )

1

1

tan tan .cos

tan tan .sin
s s

s s

β θ φ

ζ θ φ

−

−

 = 
 

=  
	           							                      (2)

2) Derivation of the Jacobian J:
.

. .

.
S

S

J βθ

φ ζ

   =     

S S

S S

J

θ θ
β ζ
φ φ
β ζ

∂ ∂ 
 ∂ ∂ =

∂ ∂ 
 ∂ ∂ 

Using MATLAB;

( ) ( )( )
( ) ( )( ) ( ) ( )

2

2 2 2

2 tan tan 1

tan tan 1 tan tan
s s

s s s s s

β βθ
β β ζ β ζ

+∂
=

∂ + + +
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( ) ( )( )
( ) ( )( ) ( ) ( )

2

2 2 2 2

2 tan tan 1

tan tan 1 tan tan
s s

s s s s s

ζ ζθ
ζ β ζ β ζ

+∂
=

∂ + + +

( ) ( )( )
( ) ( )

2

2 2

tan tan 1
tan tan

s s

s s s

ζ βφ
β β ζ

− +∂
=

∂ +

( ) ( )( )
( ) ( )

2

2 2

tan tan 1
tan tan

s s

s s s

ζ βφ
ζ β ζ

− +∂
=

∂ +

3) Derivation of the Determinant with respect to βs &ζs.

Using MATLAB;

( )( ) ( )( )
( ) ( ) ( ) ( )

2 2

2 2 2 2

2 tan 1 tan 1

tan ( tan 1 tan tan
s s

s s s s

d
β ζ

β ζ β ζ

+ +
=

+ + +
						                    

(3)

4) Derivation of the Determinant with respect to θ&φ:

Substituting (2) in (3) to get the Determinant with respect to θ and φ. By using MATLAB (4) is derived;

( ) ( ) ( )

( )
( )

2 2 2 2 cos 1
2 tan cos 1 tan sin 1

2 2 2

cos 1
cos 1

D

θθ θφ φ

θ
θ

+      + +             =
− +

+

				                  (4)

5) Plotting Determinant (3) with βs and ζs using MATLAB:

Figure 3 shows the Determinant as a function in βs and ζs, where βs varies from –90° to +90°, and ζs from –90° to +90°. 

6) Finding the limits at the borders of the surface:

The points at the borders of the surface are undefined, where βs = –90°, βs = +90°, ζs = – 90°, and ζs = +90°. MATLAB is used 
to find the limits at these borders (Applying L’Hospital’s Rule twice).

7) Plotting Determinant (4) with θ and φ using MATLAB:

Figure 4 shows the Determinant as a function in θ and φ, where  varies from 0° to +180°, and φ from –180° to +180°.

Ordinary Joint
1) Forward Kinematics Equation:

Figure 8 shows the shape of the Ordinary joint bent. It also shows the relative positions of work-space variables; θ and φ, and 
the joint-space variables; OΦ and Oθ, for pointing the joint in space:

Equation (5) shows the forward kinematics [17]:

	

( )

( )

( )

,

180 , ;

, , ;

0

or

or

ο

ο ο

φ οφ θ οθ

φ οφ θ οθ

φ θ οθ

οθ

= = 
 
 
 = ± = − 
 
 
  ∈ −∞ ∞ =  
 = 

		            							                         (5)

When the deviation angle is not 0° (or ±180°), (5) shows that there exist two solutions for any posture as shown in Figure 9. 
On the left; When OΦ = 90°and Oθ = -30°, Φ = -90° and θ = 30°. On the right; When OΦ = -90° and Oθ = 30°, Φ = -90° and θ = 30°.
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Figure 9: Ordinary joint posture with two solutions.

         

Figure 10: Ordinary joint posture with infinite solutions.

         

Figure 11: Cartesian use in forward kinematics.

         

Figure 12: The Determinant as a function in OΦ and Oθ.
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Figure 10 shows an example of multiple solutions from an infinite set of solutions when the deviation angle is 0°:

However with (5) it is hard to take into consideration the two solutions case into the Jacobian. If one to study each solution 
as a separate case the Jacobian will be an identity matrix, and the Determinant will be equal to 1, which is not the case, as the 
Ordinary joint suffers from singularities.

Even worse it is not possible to take into consideration the points of infinite solutions into the Jacobian, in order to derive 
the Determinant.

When taking into consideration that the Jacobian transforms from the joint-space to the world-space, then it will be useful 
to go from the joint-space (OΦ and Oθ) to the Cartesian coordinates with a unit vector pointing in space, and back to the world-
space (θ and φ), as shown in Figure 11:

This will formulate a better expression for the forward kinematics as follows:

	

( )( )
( ) ( )
( ) ( )

1

1

cos cos

sin .sin
tan

sin .cos

θ οθ

οθ οφ
φ

οθ οφ

−

−

 =
  

  
=       

	            							                      (6)

Equation (6) may seem trivial, but let’s check for examples; With two solutions:

Case a) For Oθ = 30°, OΦ = 20°, Substituting in (6); 

θ = 30°, Φ = 20°

Case b) For Oθ = -30°, OΦ = 200°, Substituting in (6);

θ = 30°, Φ = 20°

This shows that this single equation can handle postures with two solutions.

With infinite solutions:

Case a) For Oθ = 0°, OΦ = 20°, Substituting in (6); 

θ = 0°, Φ is undefined (tan-1(0/0)).

Case b) For Oθ = 180°, OΦ = 200°, Substituting in (6); 

θ = 0°, Φ is undefined (tan-1(0/0)).

Case c) For Oθ = -180°, OΦ = 200°, Substituting in (6); 

θ = 0°, Φ is undefined (tan-1(0/0)).

This shows that this single equation can handle postures with infinite solutions.

2) Derivation of the Jacobian J:

	
. .

. .Jθ θ

φ φ

Ο

Ο

   =      

	 J

θ θ
θ φ

φ φ
θ φ

∂ ∂ 
 ∂Ο ∂Ο =

∂ ∂ 
 ∂Ο ∂Ο 

Using MATLAB;

	

( )
( )2

sin
0

sin

1

θ

θ
φ
θ

Ο 
 

Ο ∫ =
 ∂ 
∂Ο 
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3) Derivation of the Determinant with respect to βs&ζs.

Using MATLAB;

	
( )

( )2

sin

sin
d

θ

θ

Ο
=

Ο
			             							                     (7)

The Determinant is a function in Oθ as expected.

4) Plotting Determinant (7) with OΦ and Oθ using MATLAB:

Figure 12 shows the Determinant as a function in OΦ and Oθ Where OΦ varies from –180° to +180°, and Oθ from –1° to 
+181°.

5) Finding the limits at the borders of the surface:

The determinant points that need to be examined are at Oθ = 0° and Oθ = +180°.

Hooke’s joint:
1) Forward and Inverse Kinematics Equations:

Figure 13 shows the joint-space variables of the Hooke’s joint; U1 and U2 for both degrees of freedom D1 and D2, it also 
shows their positive and negative direction with respect to the X-axis and Y-axis:

Equation (8) shows the forward kinematics [17];

	

( ) ( )( )
( )( )

( ) ( )( )

1

1

cos cos 2 .cos 1

sin 2
tan

cos 2 .sin 1

U U

U
U U

θ −

−

 =
  

  
Φ =       

	          							                     (8)

When the U2 = ±90°, U1 becomes irrelevant. However, It can only vary within this range [-90°,90°] due to physical limitations. 

         

Figure 13: Hooke’s joint joint-space with respect to the X-axis and Y-axis [17].
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At any of these two postures, the Hooke’s joint has infinite solutions as shown in Figure 14.

Some examples:

Case a) For U1 = 0°, U2 = 90°, Substituting in (8); 

θ = 90°, Φ = 90°.

Case b) For U1 = 30°, U2 = 90°, Substituting in (8);

θ = 90°, Φ = 90°.

Case c) For Oθ = 60°, U2 = -90°, Substituting in (8);

θ = 90°, Φ = -90°.

Case d) For Oθ = -70°, U2 = -90°, Substituting in (8);

θ = 90°, Φ = -90°.

Figure 15 shows the range of field of motion for the Hooke’s joint, with a deviation angle of 120°. The field of movement is 
divided into two zones Zone-1 and Zone-2. This is due to the fact that the joint will self-obstruct itself at certain postures:

Equation (9) [17] shows the inverse kinematics of the Hooke’s joint and which zone and solution to pick according to U1 and 
U2, it also shows the points with infinite solutions:

( ) ( )( )
( )( )

( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )
( )( )

( ) ( )( )
( ) ( ) ( )

1 1

2 2 2

1 1

2 2 2

sin ,cos sin .sin
1 tan , 2 tan

cos sin .cos cos

_1,| 2 | 180 | 1|

sin .cos sin .sin
1 tan , 2 tan

cos sin .cos cos

_ 2,| 2 | 180 | 1| 1

U U

zone U U

U U

zone U U from the s

ο

ο

θ θ
θ θ θ

θ θ
θ θ θ

− −

− −

−

  Φ Φ = =     Φ +    
< −

  − Φ Φ
 = =    − Φ +   

> −

( )1 ] 90 ,90 [, 2 sin ,90 ;

90 .180 , 1.180 , int .

t set of solution
U U

h h and i are egers

ο ο ο

ο ο οθ

 
 
 
 
 
 
  
 
 
 
 
 
 ∈ − = Φ
 

Φ = ± + = ±   	                               

(9)

Actually the first two expressions are enough to find the values of U1 and U2. The last expression is only useful that it limits 
the value of U1 between -90 and 90 due to physical limitations, instead of it being undefined to have any value. 

2) Derivation of the Jacobian J:

. .

. .
1

2

U

U
Jθ

φ

   =      

         

Figure 14: Hooke’s joint posture with infinite solutions.
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3) Derivation of the Determinant with respect to U1 & U2.

Using MATLAB; the determinant is derived, and it is a long expression with real and imaginary parts. However it is plotted 
directly. 

4) Derivation of the Determinant with respect to θ&φ:

Substituting (7) in (8) to get the Determinant with respect to θ and φ. While taking into consideration that there will be two 
equations, one for Zone-1 and one for Zone-2. Using MATLAB; the determinant is derived, and it is a long expression with real 
and imaginary parts. However it is plotted directly. 

5) Plotting Determinant with U1 and U2 using MATLAB:

Figure 16 shows the Determinant as a function in U1 and U2 Where U1 varies from –180° to +180°, and U2 from –180° to 
+180°.

6) Finding the zero values of the Determinant:

The determinant points that need to be examined are at U2 = ±90°.

7) Plotting Determinant with θ & φ using MATLAB:

Figure 17 shows the Determinant of the solution from Zone-1 as a function in θ&φ: Where θ varies from 0° to +90°, and φ 
from –180° to +180°.

8) Finding the zero values of the Determinant:

The Determinant points that need to be examined are at θ = 90° and ϕ = ±90°.

9) Plotting Determinant with θ&φ using MATLAB:

Figure 18 shows the Determinant of solution from Zone-2 as a function in θ&φ: Where θ varies from 0° to +90°, and φ from 
–180° to +180°.

10) Finding the zero values of the Determinant:

The determinant points that need to be examined are at θ = 90° and ϕ = ±90°.

11) Plotting Determinant with θ&φ using MATLAB:

Figure 19 shows the determinant of solution according to Zone-1 or Zone-2 as a function in θ&φ: Where θ varies from 0° to 
+90°, and φ from –180° to +180°.

12) Finding the zero values of the Determinant:

The determinant points that need to be examined are at θ = 90° and ϕ = ±90°.

Results
For the Omni-Joint; the determinant as plotted in Figure 20 is not equal to zero on the entire surface, except at the borders 

it is undefined. The limits at the points on the borders approach zero. The determinant as plotted in Figure 21 is equal to zero at 
the border where θ = 180° [just past the spikes]. These results were checked using MATLAB.

For the Ordinary-Joint; the determinant as plotted in Figure 12 is equal to one on the entire surface, except at the borders 
(where Oθ = 0° and Oθ = +180°) it is undefined. The limits at the points on the borders are also undefined. However the value 
of the Determinate is equal to -1 just past the borders (at Oθ = -1° and Oθ = +181°). These results were checked using MATLAB.
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Figure 15: Hooke’s joint range of field of motion [17].

         

Figure 16: The Determinant as a function in U1 and U2.

For the Hooke’s Joint; the determinant as plotted in Figure 16 is only equal to zero at U2 = ±90°, which is equivalent to θ = 
90° and ϕ = ±90°. These results were checked using MATLAB.

Conclusions and Discussion
For the Omni-Joint; even though that the values at the borders of the surface shown in Figure 20 are undefined, the limits 

of these points are equal to zero. Which indicates that the Omni-Joint has a singularity when θ = 180°. Figure 21 confirms this, 
as the value of the determinant at θ = 180° is equal to zero. In addition (1) and (2) show that the Omni-Joint has one-to-one 
mapping as long as the deviation angle θ of is not equal to 180°.
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Figure 17: The Determinant for Zone-1 as a function in θ & φ.

         

Figure 18: The Determinant for Zone-2 as a function in θ & φ.
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Figure 19: The Determinant for the whole range of motion as a function in θ & φ.

         

Figure 20: The Determinant as a function in βs and ζs.
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Journal of Advanced Robotic Systems.
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of 3-UPU Parallel Manipulator in Singularity and Its Application. 
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Kinematics modeling and simulation of an autonomous omni-
directional mobile robot”. Ingenieríae Investigation, 35: 74-79.

9.	 Djebrani S, Benali A, Abdessemed F (2011) Modelling and 
feedback control of an omni-directional mobile manipulator.
IEEE International Conference on Automation Science and 
Engineering.

10.	Xie Y, Yu J, Zhao H (2018) Deterministic Design for a Compliant 
Parallel Universal Joint With Constant Rotational Stiffnes. J. 
Mechanisms Robotics 10: 031006.

11.	Cheng G, Wang S-t, Yang D-h, et al. (2015) Finite Element 
Method for Kinematic Analysis of Parallel Hip Joint Manipulator. J 
Mechanisms Robotics 7: 041010.

For the Ordinary joint, Figure 12 showed that the 
Determinate is undefined at Oθ = 0° and Oθ = 180°, which 
may confirm that the Ordinary joint has singularities at these 
points, such as a physical prototype examination would proof. 
In addition (6) shows that the Ordinary joint is not one-to-one 
mapping.

For the Hooke’s Joint, Figure 16 showed that the 
Determinate is equal to zero at U2 = ±90°. In addition Figure 
17, Figure 18, and Figure 19 show that the Determinate is 
equal to zero at θ = 90° andφ = ±90°. These confirm that the 
Hooke’s joint has singularities at these points. In addition (8) 
and (9) show that the Hooke’s joint is has one-to-one mapping 
with discontinues range of field of motion.

These data show that that:

The Omni-Joint is singular free, except when the deviation 
angle is equal to 180°. And has the advantage of having one-
to-one mapping, except when the deviation angle is equal to 
180°.

The Ordinary joint suffers from two singularities when 
the deviation angel is equal to 0° or 180°. It is not one-to-one 
mapping.

The Hooke’s joint suffer from two singularities when the 
deviation angle is 90° at an azimuth angle equal to ±90°, other 
that these two postures it has one-to-one mapping. However 
its range of field of motion is discontinuous.
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Figure 21: The Determinant as a function in θ and φ.
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