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Introduction
Parallel robots with three independent translations and 

one rotation around an axis of a fixed direction, a.k.a. SCARAa 
robots or Schoenflies motion generators (SMGs), dedicate to 
material handling in terms of pick-and-place (PnP) operations, 
thanks to their advantages of high speed/stiffness and light-
weight architecture. For instance, the well-known Delta ro-
bot [1] that was commercialized by ABB Flexible Automation 
in the late 1990s, serving in three industry sectors, i.e., the 
food, pharmaceutical, and electronics industries. Amongst all 
types of the parallel SMGs, the robot counterparts with four 
identical RRПRb limbs in-parallel received the most attentions 
from both industry and academia. The research group “Lab-
oratoire d’Informatique, de Robotique et de Microelectro-
nique de Montpellier (LIRMM)” firstly developed the H4 [2] 
robot in two versions, with four identical limbs and an artic-
ulated traveling plate [3]. Later on, the similar versions of H4 
robot, i.e., the I4 robot [4] and the symmetrical Par4 [5] were 
developed. The main difference among those robots lies in 
the different structures of articulated platforms [6]. The com-
mercial version of Par4, namely, the Quattro robot by Adept 
Technologies Inc., hit the market in 2007, which is the fastest 

industrial PnP robot available. Besides, the LIRMM group pro-
posed the Heli4 robot with a compact articulated traveling 
plate that is connected by a screw pair featuring full-circle 
end-effector rotation [7], of which the commercial version 
“Veloce. Robot” was developed by the Penta Robotics. Other 
four-limb parallel SMGs should be noticeable for their high 
performance [8-14].

To authors’ knowledge, most of the existing four-limb 
SMGs inherit the architecture of the Quattro robot with mo-
bile platforms (MPs) of different architectures. On the other 
hand, these robots have a cylindrical workspace (WS) due to 
their fully symmetrical topological architecture, which is not 
optimum for the PnP operations that are normally distribut-
ed within a long and narrow space. From the perspective of 
the properties of PnP motions, the Ragnar robot [15] was de-
signed with a rectangular workspace to utilize the shop-floor 
space efficiently, allowing more robots to be deployed side-
by-side in shop-floors for utilization of spaces. However, this 
robot has limited end-effector rotation. By combining the ad-
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aThe acronym “SCARA” stands for Selective Compliance Assembly 
Robot Arm or Selective Compliance Articulated Robot Arm.
bR and П represent the revolute and П (parallelogram structure) 
joints, respectively, and an underlined letter indicates an actuated 
joint.
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ones with the elimination of the nonlinear factors such as the 
modeling error and the nonlinear friction [36]. If both struc-
tured and unstructured modeling errors exist, neural network 
CTC provides a better solution for robot control [37,38]. On 
the other hand, the controller enhancement may lead to the 
increased complexity and cost of design and implementation 
of the control schemes. In this work, CTC is applied to the 
dynamic control of presented robot under study, wherein 
the control variables are obtained by solving an optimization 
problem, aiming to achieve a tradeoff between the control 
precision and complexity.

In this paper, the dynamics of a four-limb fully parallel ro-
bot adapted for the PnP operations, towards the efficient uti-
lization of shop-floor space, is investigated. A concise dynam-
ic model for the robot under study is built with principle of 
virtual work. Computed torque controller is developed with 
the optimized control variables, which is numerically illustrat-
ed and evaluated experimentally. The comparisons show the 
effectiveness of the developed dynamic control strategy for 
the parallel robot.

Manipulator Architecture
Figure 2 depicts the kinematic stricture of the robot with a 

screw-pair based mobile platform. Similar to its existing robot 

vantages of the SMG counterparts, an asymmetric robot with 
Ragnar architecture and screw-pair based mobile platform 
(MP) was developed [16] as depicted in Figure 1, for efficient 
use of space with high rotational capability.

In general, the parallel PnP robots work in the domain 
of high frequencies with complex and coupled nonlinear dy-
namic models, which is a challenging task in their dynamic 
control. The major difficulty lies in finding a solution that not 
only can sufficiently describe the real robotic system, but 
also can possibly be calculated in real time for implementa-
tion into control algorithms [17]. Since the robot links usu-
ally do not have regular geometries, some assumptions will 
be made for simplification and computational efficiency [18-
21], leading to simplified dynamic models but introducing 
modeling errors in turn [22,23], which calls for a highly ad-
vanced control algorithm to achieve a satisfactory dynamic 
performance. Computed-torque control (CTC) is well suited 
for trajectory tracking control when the dynamic model of a 
robot is accurately known [24]. Some illustrative examples of 
the application of CTC to parallel robots can be found in the 
literature [25-29]. If there are unmodeled errors unignorable, 
some adaptive CTC methods are able to capture the param-
eter variations [30-35]. For instance, the linear proportion-
al-derivative (PD) parameters can be replaced with nonlinear 

         

Figure 1: Prototype of the asymmetrical parallel SMG with screw-pair based mobile platform.
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Kinematic Geometry and Jacobian Matrices
The robot’s kinematic problem of this family has been 

extensively studied [39], which will be revisited by skipping 
the details. Let i, j and k stand for the unit vectors of x-, y- 
and z-axis, respectively, the axis of rotation of the ith actuated 

joint is denoted by ( ) 1(4) 2(3)u  = R k,-  =  = 4i y i
πα α α  

and the Cartesian coordinates of points Ai, Bi and Ci, i = 1, …., 
4, are expressed in the reference frame asc

( )1 3a  = -a  = sgn(cos )  sgn sin  0
T

i x i ya aβ β    
(1a)

[ ]b  = cos cos  sin  -sin cos T
i i i i i ib α θ θ α θ (1b)

( ) ( ) = cos  sin  mod ,  2 / 2 p
T

i i ic r r i hβ β φ π +   	

						             
(1c)

where [ ]p =   Tx y z  and φ  represent MP position and 

orientation, respectively, and ( ) = 2 1 4i i πβ − .

The robot’s MP posture can be represented by 

χ = p  
TT φ   .

By making use of the geometric constraint equation be-

counterparts, each limb is composed of an actuated proximal 
link arm and a distal link to connect the base and mobile plat-
forms. The mobile platform consists of two sub-platforms that 
are connected by a screw pair to transform the relative trans-
lation along vertical axis of two sub-platforms into rotational 
movement about the axis. For the lightweight design of the 
robot prototyping, as displayed in Figure 1, the proximal and 
distal link are fabricated with carbon fibre tubes, and most of 
the connecting components between the links and platforms 
are made of composite material by 3D printing. The previous 
work with a footprint ratio comparison [15] has revealed that 
the topological robot architecture under study determines 
a long and narrow workspace envelope well adapted to the 
PnP operations, with respect to (w.r.t.) the probability distri-
bution of end-effector locations.

The reference coordinate frame Fb is built with the origin 
located at the geometric center of the base frame. The z-axis 
points upward, and x-axis is parallel to segment A1A2 between 
actuated joints 1 and 2. The moving coordinate frame Fp is 
located at geometric center of the lower platform, and the 
Z- and X-axis are parallel to z- and x-axis, respectively, in the 
neutral configuration. Point Ai represents the center of actu-
ated joint, and Bi, Ci represent the center of short connecting 
bar at both ends of the parallelogram. The ith limb consists of 
an inner and an outer arms with link lengths b and l, respec-
tively. The rotational capability can be enhanced by selecting 
an appropriate screw lead that is denoted by pitch h.

         

Figure 2: Kinematic structure of the robot under study.

csgn (.) stands for the sign function of (.), and mod ( ) stands for the 
modulo operation.
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henceforce, the Jacobian matrices mapping the velocities 
of the upper and lower sub-platforms and actuated joint rates 
are written as

J χ  = J ,  J χ  = Ju u i lθ θθ θ 

   			          (10)

or
1 1χ  = J J  = J ,  χ  = J J  = Ju u up l l lowθ θθ θ θ θ− −
   

  	        
(11)

with

[ ]1 2 3 4J  = j  j  j  j T
u u u u u  			        (12a)

[ ]1 2 3 4J  = j  j  j  j T
l l l l l 				        

(12b)

where

( ) ( ) ( )j  = c b mod 1,2 c b k
2

T
T T

ui i i i i
hi
π

 − − + −   	      
(13a)

( ) ( ) ( )j  = c b  mod ,  2 c b k
2

T
T T

li i i i i
hi
π

 − −          
(13b)

Dynamic Modeling by Principle of Virtual 
Work

The main approaches for robot dynamic modeling usually 
include the Lagrangian formulation [40,41], the Newton-Euler 
equations [42] and the principle of virtual work [43]. Since 
the kinematic mapping of the movements between the input 
and output components of the robot linkage in the reference 
frame has been built in previous section and the links are sim-
ply connected, the relationship between actuation torques 
and inertia forces can be directly determined. Henceforth, 
the principle of virtual work is adopted to model robot dy-
namics for computational efficiency, without the operations 
of the differentiation on the system energy in Lagrangian for-
mulation or recursive matrix propagation by Newton-Euler 
equations. Prior to modeling, it is supposed that the centers 
of mass of the links are located at their geometric centers, 
and the torques caused by the rotation of the outer arms are 
ignored due to the lightweight structure. The mass of each 
outer arm is simplified as two lumped masses located at the 
two ends of the distal link, as shown in Figure 3.

According to the principle of virtual work, the sum of 
the work done by the external and internal forces should 
to be zero. The external forces include actuating torque 

[ ]1 2 3 4 =    Tτ τ τ τ τ exerted on the actuated joints, and the 

gravities Gb, Gpu and Gpl of the inner arm, upper platform and 
lower sub-platforms. On the other hand, let fb, fpu and fpl be 
the inertia forces of inner arm and subplatforms, proportional 
to the internal forces, consequently, the equation of dynam-
ics can be formed as

G G G f f f  = 0T T T T T T T
b pu u pl l b pu u pl lτ δθ δθ δχ δχ δθ δχ δχ+ + + − − −      

(14)

Where [ ]1 2 3 4 =    Tδθ δθ δθ δθ δθ and 

 =    
T

u x y z
l

φδχ δ δ δ δ   represent virtual displacement of ac-

tuated joints and sub-platforms, respectively. Let g be the 
gravity coefficient, one obtains

low:

( ) ( ) 2c b c b  = ,   = 1, ..., 4T
i i i l i− −                           (2)

the solutions to the inverse geometry problem of the ro-
bot can be solved as

2 2 2
1 = 2 tan i i i i

i
i i

I I J K
K J

θ − − ± + −
−                               

(3)

with

( ) ( ) 2 2 2 = -2 c a j,  = 2 c a u ,   = c aT T
i i i i i i i i i iI b J b K b l− − − + −    

(4)

For a given pose of the robot end-effector, each limb can 
have two postures that are characterized by the sign “-/+” in 
Eq. (3), which means that the robot can have up to 16 working 
modes (WMs). To avoid the mechanical collision, the working 
mode “- -+ +” is selected for the robot.

Kinematic Jacobian matrix of the robot
Differentiating Eq. (2) w.r.t. time yields

χJ χ = Jθθ

 					              (5)

with

[ ]χ 1 2 3 4J  = j  j  j  j ,  χ =    
TT x y z φ  



     		        (6a)

[ ]1 2 3 4 1 2 3 4J  = diag    ,   =    
T

h h h hθ θ θ θ θ θ  
        (6b)

where Jx and Jθ are the forward and inverse Jacobians, re-
spectively, and

( ) ( ) ( )j  = c b  mod ,  2 c b k
2

T T
i i i i i

hi
π

 − −  
      (7a)

( ) ( ) = c b u b aT
i i i i i ih − × −    		           (7b)

As long as the forward kinematic Jacobian is nonsingular, 
the kinematic Jacobian matrix is obtained as

1
÷J = J Jθ
−

					              
(8)

Jacobian matrices of the sub-platforms
Due to that the mobile platform consists of two sub-plat-

forms, the upper sub-platform can translate in vertical direc-
tion with respect to the lower one, which introduces different 
velocities between the end-effector and sub-platforms. Be-
sides, the Jacobian matrix between the upper platform and 
the actuated joints is also different from that of the lower 
one.

The velocities of the upper and lower sub-platforms, i.e., χu  and χ l , respectively, can be expressed as

1 0 0 0
0 1 0 0

χ  = H χ, H  = 
0 0 1

2
0 0 0 0

u u u h
π

 
 
 
 
 
 
  

                            (9a)

[ ]χ  = H χ, H  = diag 1 1 1 0l l l 

 		         (9b)
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1G  = 
2b b l bm m gbz + 

  			         
(15a)

G  = 0 0 - 2  0
T

pu pu l
pl pl

m m g
  +  

   	      

(15b)

2
4

1f  = I  = I
3b b l bm m b θ θ + 

 
 

		        
(15c)

[ ]f  = 2  diag 1 1 1 0 χ = M χpu pu l pu
pl pl pl

m m + 
 

 (15d)

with

[ ]1 2 3 4z  =    ,   = -sin cosT
b b b b b bi i iz z z z z α θ

	      
(16a)

1 2 3 4 =    ,  χ =    
T T

x y zθ θ θ θ θ φ      
     

   

	      
(16b)

where mb, ml, mpu and mpl are the masses of the proximal 
and distal links, upper and lower sub-platforms, respectively.

Differentiating Eq. (11) w.r.t. time leads to

χ  = J J ,  χ  = J Ju up up l low lowθ θ θ θ+ +   

  		         
(17)

Analog to the time-differential equations of motion, the 
small-amplitude displacements uδχ  and lδχ  of the upper 
and lower sub-platforms can be deduced as following

 = J ,   = Ju up l lowδχ δθ δχ δθ  			         (18)

Combining Eqs. (14)-(18), Eq. (14) can be rewritten as

( )G G J G J f f J f J  = 0T T T T T T T
b pu up pl low b pu up pl lowτ δθ+ + + − − −  (19)

For any virtual displacement θδ Eq. (19) should meet

 = -G J G J G f J f J fT T T T
b up pu low pl b up pu low plτ − − + + +      (20)

After rearranging the Eq. (20) in connection with Eq. (17), 
the simplified dynamic model is derived as below:

( ) ( ) ( ) = M C ,  Gτ θ θ θ θ θ θ+ +  

		          
(21)

With

( )M  = J M J J M J IT T
up pu up low pl low bθ + +

	      
(22a)

( )C ,   = J M J J M JT T
up pu up low pl lowθ θ +  

                       
(22b)

( )G  = -J G J G GT T
up pu low pl bθ − −

		        
(22c)

Dynamic model (21) has been evaluated [44], applicable 
for the characterization of the robot dynamics, calculation of 
torques for selection of actuators and gearboxes, robot con-
trol, etc.

Control Scheme Design
Dynamic control plays an important role in the robot ap-

plications, thus, dynamic model (21) will be integrated in the 
controller for the robot. It is noteworthy that Eq. (21) does 
not take the frictions and other disturbances into account, 
namely, unmodeled errors, which may decrease the control 
precision. In light of this, the dynamic model is reformed as 
below

( ) ( ) ( ) ( ) = M C ,  G f ,  tτ θ θ θ θ θ θ θ+ + +  

         
(23)

where f (θ, t) characterizes the unmodeled errors in terms 
of the frictions and time-varying stochastic disturbances, and 

here we let ( ) ( )f ,   = λ sin sini itθ θ θ−  .

Amongst various control approaches for the robotic ma-
nipulators, computed torque control that is easily understood 
and of good performances, is an effective motion control 
strategy for robotic systems [45], which will be adopted to 
design the control scheme. According, the proportional-de-

         

Figure 3: Simplified lumped mass model of the distal link.
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{ }. . 0 < ,   1000p Ds t k k ≤

0 <   10λ ≤
where |e(t)| represents the 2 norm of the vector of the 

tracked joint errors.

Simulation and Experimental Tests
In this work, the dynamic simulation and experimental 

measurement are carried out along a testing trajectory de-
fined in [14] lying in the x-z plane, as displayed in Figure 5. As 
most of the components are made of lightweight material, 
the structural stiffness of the robot under study is not as high 
as Quattro, thus, the working cycle is set to 120 cycles per 

rivative (PD) control law is designed below

( ) ( ) ( ) ( ) = M u+C ,  G f ,  tτ θ θ θ θ θ θ+ +            (24)

With

u = K e-K e; e = - ,  e = d p D d dθ θ θ θ θ− −  

              (25)

where KP = kP I4 and KD = kDI4 are the proportional and de-
rivative gains matrices, respectively, and θ and θd are the ac-
tual and desired vector of joint variables. The corresponding 
controller is depicted in Figure 4. To ensure the control pre-
cision, the following optimization problem is formulated to 
minimize the errors of the joint variables:

( ) ( )
0

min  f  = e d
t

t
t t t∫  			          (26)

         

Figure 4: Computed torque control scheme of the robot.
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Figure 5: The motion profiles of the dynamic testing trajectory.

Table 1: The geometric parameters and masses of the links and sub-platforms.

Geometric parameters [mm] Link mass [kg]

[ax, by] b l r h mb ml mpu mpl

[300, 150] 300 600 100 20 0.730 0.421 0.955 1.180
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Solving the optimization problem (26) in connection with 
the implementation of the dynamic simulation, the optimized 
control variables are found as

minute (cpm)d. The links and sub-platforms are weighed as 
listed in Table 1, together with the geometric parameters.

Simulation tests
A testbed, as depicted in Figure 6, was built in the Sims-

cape module of Matlab/simulink to analyze the dynamic be-
havior of the robot and to validate the controller parameters.

         

Figure 6: The main dynamic simulation model in Simscape of Matlab/simulink.

dHere, a cycle is defined as the movement along a trajectory of 25 
mm × 305 mm × 25 mm with a 1 kg payload per minute, which can 
be replaced by 25 mm × 300 mm × 25 mm in the definition of Adept 
test cycle [46].
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(a)

(b)
Figure 7: Simulation results of joint dynamics: a) Angular errors; b) Torques.

         

Figure 8: Time-varying errors of e = dθ θ− 

 .
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(a)

(b)

Figure 10: Experimental measurements of joint dynamics: a) Angular errors; b) Torques.

         

Figure 9: The pose errors of the mobile platform along the trajectory.
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ables to minimize the tracked joint errors.

Simulation tests and experimental measurements are 
carried out along a trajectory of a picking testing cycle, both 
of which shows that the pose errors of the mobile platform 
are acceptable for industrial application. Experiments are im-
plemented by observing the joint dynamics to evaluate the 
developed controller in comparison with the simulation re-
sults. The comparison shows a good agreement between the 
simulation and experimental results and the measurements 
validates the effectiveness of the developed dynamic control 
strategy. Future work will focus on the integrated advanced 
control design for improvement of control precision and buf-
feting suppression.
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