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Introduction
Object recognition is one of the basic abilities of the hu-

manoid robots, it allows the humanoid robots to recognize 
nearby objects and perform many anthropomorphic tasks, 
which can help humans in the repetitive work or the danger-
ous operational environments [1]. It is well known that hu-
mans can easily distinguish objects and perform various tasks 
through their vision; however, without the vision system and 
the object detection and classification algorithm, it is difficult 
for the humanoid robots to complete the object recognition 
task. Therefore, the key to improving the other capabilities of 
the humanoid robots is to first develop high-performance al-
gorithms for their object detection and classification system.

As the cornerstone of image understanding and comput-
er vision, object detection is the basis for more complex and 
higher-level visual tasks, such as segmentation, scene under-
standing, target tracking, image description, event detection, 
and activity recognition. Object detection is necessary for 
artificial intelligence and information technology, including 
robotics, autonomous driving, human-computer interaction, 
intelligent video surveillance, surface defect detection [2], 
ship and plane detection in the optical remote sensing images 
[3,4], augmented reality [5], and has been studied for years. 
The object detection tasks usually contain two steps: Use a 
bounding box to locate the objects and then refine the box 
and classify the object [6]. With the popularity of deep learn-

ing and continuous improvement of computer performance 
in recent years, deep neural networks have shown better re-
sults than the traditional object detection algorithms, such 
as edge detection [7], gradient matching [8], etc. Recently, 
CNNs have achieved great success in the fields of object de-
tection [9], recognition [10], object grasping control [11], 
robotic manipulator motion path planning [1], etc. The most 
representative algorithms are Faster R-CNN [9] and Single 
Shot multibox Detector (SSD) [12], they can learn the target 
object’s features in the datasets with built-in neural network 
and improve their performance gradually through training. 
Faster R-CNN and SSD represent two typical target detection 
approaches: Two-stage approaches and one-stage approach-
es. For the two-stage approaches, they divide the object de-
tection process into two phases: Using a feature extracting 
network to extract the feature information of the target ob-
jects and roughly locate objects, and then refine the locations 
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R-CNN still uses the selective search method to generate re-
gion proposals and this step is the most time-consuming part, 
and the whole network is not an end-to-end network. S Ren, 
et al. proposed Faster R-CNN [9] algorithm, which proposed a 
region proposal network (RPN) to replace the selective search 
method. The RPN generates about 300 region proposals for 
each input image and shares the parameters of the convo-
lutional layer, thus greatly improving the speed of the object 
detection. Based on the idea of Faster R-CNN, many two-
stage object detection methods have been proposed these 
years, such as Mask RCNN, R-FCN, and so on.

One-stage object detection methods
Although the two-stage object detection methods like 

faster R-CNN have great advantages in object recognition ac-
curacy, they are not satisfactory in some real-time recogni-
tion situations. A new algorithm named You Only Look Once 
(YOLO) was developed by Joseph Redmon, et al. [17] in 2016. 
YOLO frames object detection as a regression problem to spa-
tially separated bounding boxes and associated class proba-
bilities. Bounding boxes predictions and classifications are 
done directly through a single neural network, thus making 
it much faster compared to the industry standards, reaching 
45 frames per second in the real-time object detection tasks. 
Many other one-stage detection methods are proposed after 
YOLO, such as YOLO v2, YOLO 9000 [18], YOLO v3 [19], SSD 
[12], etc. Compared with the two-stage methods, the one-
stage methods such as YOLO do have a big advantage in the 
real-time processing capabilities, but the accuracy of the ob-
ject recognition is relatively low. Therefore, there is a neces-
sity to strike a trade-off between the two-stage methods and 
the one-stage methods.

Researches on robot recognition and object de-
tection

In recent years, many CNN-based studies have focused 
on such problems as small object detection [6], face detec-
tion [20], crowd counting [21,22], traffic sign detection [23], 
and car detection [24]. In the meantime, there are increasing 
research on the deep learning application for the humanoid 
robot’s object recognition, grasp detection, etc. [25]. Lenz, et 
al. [26] considered the detecting robotic grasps in an RGB-D 
view of a scene containing objects and applied an approach 
to avoid time-consuming feature design by the manual work. 
Levine, et al. [11] described a learning-based approach to 
hand-eye coordination for the robotic grasp from the mon-
ocular images. Pinto and Gupta [27] used large-scale datasets 
and multi-stage training for the grasping task and get state-
of-the-art performance on generalization to the unseen ob-
jects. Noda, et al. [28] proposed a computational framework 
enabling the integration of the sensory-motor on the time-se-
ries data and the self-organization of multi-modal fused rep-
resentation based on a deep learning approach. Yu, et al. [29] 
presented a vision-based robotic grasping system that could 
recognize different objects as well as estimate their poses by 
using a deep learning model, finally grasped them and moved 
to a predefined destination. Zhang, et al. [30] introduced a 
machine learning-based system for controlling a robotic ma-

and classify the objects. For the one-stage approaches, they 
can locate and predict the target objects directly through the 
network [13].

Different from single object detection task, the object rec-
ognition applied to the humanoid robots has strict require-
ments on speed, accuracy and environmental adaptability. 
Although there are plenty of researches on the robotic ob-
ject detection and various applied object detection methods 
on the single or the multi-fingered industrial robotic hands, 
most robotic hands cannot achieve the degrees of freedom 
(DOF) of a human and are much less flexible than a human. 
Therefore, this paper uses Faster R-CNN as the basic meth-
od and improves the speed and accuracy of object detection. 
The algorithm is combined with a humanoid robot to test the 
algorithm performance in the experiments.

Related Work
There have been many studies on the grasping objects of 

the humanoid robots. However, in real-world environments, 
if there are other distracting objects in the humanoid robots’ 
view field, it is a challenge to accurately detect and locate the 
target objects. In this section, the existing methods of object 
detection and localization for the humanoid robots are dis-
cussed and summarized as follows.

Two-stage object detection methods
The goal of the generic object detection is to determine 

the locations and classifications of all the target instances in 
a natural image based on a large number of predefined cate-
gories, which is the most fundamental and challenging issues 
in machine vision. The deep learning technology emerged in 
recent years is a powerful method for learning feature rep-
resentation directly from data, and has brought significant 
breakthroughs for object detection.

In 2012, Krizhevsky, et al. [14] proposed the deep convolu-
tional neural network Alexnet, and achieved record-accurate 
object recognition accuracy in the Large-Scale Visual Recogni-
tion Challenge (ILSVRC) competition. Since then, many target 
detection algorithms based on deep learning have emerged. 
In 2014, Ross Girshick, et al. proposed a region-based CN-
N(R-CNN), which uses the selective search algorithm to gen-
erate about 2000 region proposals from the bottom to the 
top of the input image, and then warp these region proposals 
to 227 × 227 and input them into the CNN, and the output 
of the fc7 layer of the CNN is taken as features of these pro-
posals, and they are trained by the support vector machine 
(SVM) for classification. R-CNN is slow to train, consumes a lot 
of computing resources, and has limitations on the size of the 
input image. Kaiming He, et al. proposed SPP-net [15] which 
introduced a spatial pyramid pooling (SPP) layer to remove 
the fixed-size constraint of the network, thus making the 
speed of SPP-net several times higher than R-CNN. In 2015, 
Ross Girshick proposed fast region-based CNN (Fast R-CNN) 
[16], which aims to complete the classification and position-
ing task with two parallel fully connected layers. Fast R-CNN 
combines the essence of R-CNN and SPP-NET, and introduces 
multi-task loss function, which makes the training and testing 
of the entire network very convenient. Nevertheless, the fast 
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22 steering gears. The size of the robotic hand is designed 
according to the normal person’s proportion. The five fin-
gers are also driven independently by the respective motors. 
Each finger has four knuckles, the base knuckle and the first 
to third knuckles. The rotation angle range of each finger is 
shown in Table 2.

Humanoid robotic hand kinematics
The humanoid robotic hand is composed of rotational 

gears connected to each other, and there are two kinds of 
kinematics for a humanoid robotic hand: Forward kinematics 
and inverse kinematics. The forward kinematics determines 
the end position of the manipulator based on the structure 
of the given humanoid robotic hand and the rotation angle of 
each joint. The D-H representation (Denavit-Hartenberg Con-
vention) is a matrix representation of the connection between 
the various joints of the humanoid robotic hand. According 
to the D-H notation, assign a reference coordinate system 
to each joint, then determine the transformation matrix be-
tween any two adjacent coordinate systems, and finally write 
the total transformation matrix of the robot base coordinate 
system to the end effector (that is, humanoid robotic hand). 
The transformation matrix is expressed as:

( ) ( ) ( ) ( )i  = Rot  

cos sin cos sin sin cos
sin cos cos cos sin sin

 
0 sin cos
0 0 0 1
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where i  represents the angle from xi-1 to xi around Zi-1, 
and di represents the distance from xi-1 to xi along Zi-1. Ai rep-
resents the distance from Zi-1 to Zi along xi-1, and i  represents 
the angle of rotation Zi-1 to Zi about the xi axis. The main goal 
of the inverse kinematics problem is to calculate the angle of 
each joint of the humanoid robotic hand given the structure 
of the humanoid robotic hand and the end pose. The inverse 

nipulator with visual perception. Gu, et al. [31] presented an 
asynchronous deep reinforcement learning approach, which 
could be used to learn the complex robotic manipulation skills 
from scratch on the real physical robot manipulator.

System Overview
This paper proposes a system architecture for the ob-

ject detection of the humanoid robots, as shown in Figure 1, 
which contains an object detection module and a humanoid 
control module as well as a recognition module. The object 
detection module is designed to quickly and accurately de-
tect the target object in the input image, while the humanoid 
robot control module and the recognition module use the for-
mer to perform object recognition task and other operations 
such as grasping, sorting, etc.

For the object detection module, Kinect sensor captures 
the work area image of the humanoid robot, that is, the 
image of the object to be recognized, and the image is fed 
into the pre-trained object-detection network, and then the 
bounding box and the category information of the related ob-
ject can be obtained. These results are input to the humanoid 
robot control module.

According to the object detection result, the object and 
the humanoid robotic hand are simulated in the simulation 
module and the humanoid robotic hand can move to the top 
of the detected object. Finally, the other tasks such as grasp-
ing can be completed. The simulation module combines the 
virtual humanoid robotic hand and the object detection pro-
gram, the images captured by Kinect are fed into the program 
and the results are inputted into the virtual hand operating 
system for motivation.

Hardware specifications
The object detection module contains a Kinect v2 and it 

is connected to a PC. The specifications of the PC are given in 
Table 1. The humanoid robot control module and the recog-
nition module is mainly composed of a pair of the humanoid 
robotic hands, each of them has 21 DOFs just like that of the 
human hand structure, and each robotic hand has a total of 

Table 1: PC specifications.

Name Detail

CPU Intel(R) Core(TM) i7-7820X CPU @ 3.60 GHz

GPU Nvidia GeForce GTX 1080 Ti

Memory 16GB

Table 2: Rotation angle (degrees) range of each finger.

Knuckle Thumb Index Middle Ring Little

Base [0, 80] [0, 40] [0, 20] [0, 20] [0, 20]

First [0, 80] [0, 90] [0, 90] [0, 90] [0, 90]

Second [0, 90] [0, 108] [0, 108] [0, 108] [0, 108]

Third [0, 80] [0, 90] [0, 90] [0, 90] [0, 90]

         

Figure 1: The proposed system architecture for the object detection of humanoid robots.
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some important features to be ignored, resulting in the gross-
er granularity. Therefore, considering the balance of com-
puting resource consumption and object detection accuracy, 
inspired by [35,36], the feature maps of the con4_3 layer and 
the conv5_3 layer are combined in the VGG16 network, and 
concatenate the results in the input to the ROI layer. Specif-
ically, the result of the conv4_3 layer is normalized and then 
concatenated with the result of conv5_3 and rescaled to the 
size of the original feature map, and then a 1 × 1 convolution 
is used to match the original network channels. For example, 
if the input image size is 224 × 224, the map of the con4_3 
layer’s feature would be 14 × 14, therefore the feature map 
of the conv5_3 layer would be up-sampled to match the size 
of 14 × 14. The architecture of the VGG16 network is shown in 
Figure 2, and the specific structure proposed above is shown 
in Figure 3.

Faster R-CNN is mainly composed of four parts: Convolu-
tion layer, which is used to extract the features of input im-
ages and obtain feature maps; RPN network layer, which is 
a substitute for selective search in fast R-CNN and is used to 

kinematics is more important than the positive kinematics 
because it allows the end of the robotic hand to move to a 
specified pose to perform a grab job.

Object Detection and Simulation
In this part, the object detection method based on Fast-

er R-CNN is introduced and the simulation environment 
is setup. Faster RCNN is one of the most representative 
methods in the object detection field [32]. Considering the 
limited computational resources of the humanoid robots 
in the experiments and the disadvantages of the object 
recognition in the original network, such as the low recog-
nition rate of the small object detection [33,34], the orig-
inal network is optimized to balance the computational 
cost and the detection accuracy.

For the traditional Faster R-CNN method, the RoI (region 
of interest) pooling layer uses those feature maps extracted 
from the last layer of the convolutional network to generate 
the region features. Because the deeper layers get wider re-
ceptive fields in the convolutional networks, this may cause 

         

Figure 2: The architecture of VGG16 network.

         

Figure 3: The concatenation architecture of the convolution layers.
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in some overlapping objects being missed. To solve this prob-
lem, an optimized NMS algorithm is used, which is called soft-
NMS and holds the boxes with IoU higher than the threshold, 
and sets them to a lower score instead of deleting them di-
rectly. The function is defined as follows [6]:

( )
( )( ) ( )

, ,
  

s 1 , , IoU ,

<= 
⋅ − ≥

i i
i

i i i

s IoU M B T
s

IoU M B M B T
 	          (8)

where T is the threshold of IoU, when the IoU of M is 
greater than the threshold T, the score of the bounding box 
is linearly attenuated. In this case, the bounding box that is 
close to M is attenuated to a large extent, and the bounding 
box far from M remains unaffected.

In order to further verify the performance effect of the 
algorithm applied in the humanoid manipulators, the sim-
ulation software V-REP and 3D max were used to simulate 
the whole system and a simulation test platform including 
image acquisition, object recognition and corresponding hu-
manoid manipulators' motion was built. V-REP is a strong 3D 
integrated environment for robots and has several universal 
calculation modules (inverse kinematics, physics, dynamics, 
collision detection, minimum distance calculation, path plan-
ning), distributed control architecture (control scripts of un-
limited number, thread or non-thread), and several extension 
mechanisms (plug-in, client application program and so on.) 
[37,38]. V-REP also supports many programming languages 
such as C++, Python, Matlab and so on. We use the built-in Ki-
nect model of V-REP as the sensor of the virtual environment, 
use 3D max as an auxiliary tool to design different objects, 
and then import them into V-REP as the target object for rec-
ognition. Our object detection models are implemented on 
the Google TensorFlow platform using Python and the results 
can be used by the simulation platform by Python APIs built-
in the V-REP software. The platform is shown in Figure 4.

Experiment Schemes and Results
In order to verify the effects and the performance of the 

optimized algorithm proposed in this paper, three datasets 
are mainly used to conduct the experiments, namely PASCAL 
VOC 2012 [39], MS COCO [40] and another self-built dataset 
containing many small objects.

The PASCAL VOC 2012 dataset contains 20 object catego-
ries including people, animals (such as cats, dogs and birds), 
vehicles (such as cars, ships and planes), furniture (such as 
chairs, tables, and sofas) and is one of the most widely used 
benchmark datasets for generic object detection.

MS COCO is a well-known large-scale object detection, 
segmentation, and captioning dataset built by Microsoft. 
COCO has several features including object segmentation, 
330K images (> 200 K labeled), 80 object categories, 5 cap-
tions per image, etc.

Our self-built dataset consists of some images of the Cor-
nell Grasping Dataset and photos taken by ourselves. There 
are many small objects in these pictures, which is convenient 
for us to test the performance of the algorithm.

The VGG16 model pre-trained on ImageNet is em-

recommend the candidate regions and generate their scores, 
using a non-maximum suppression strategy to select the can-
didate regions with scores greater than 0.7 and scores less 
than 0.3; RoI pooling layer, like Fast R-CNN, converts the dif-
ferent sized inputs to the fixed-length outputs; classification 
and regression layer, which is used to get the classification 
score of the regions and regress bounding box. The RPN net-
work layer is trained end-to-end and its loss function is de-
fined as:

{ } { }( ) ( ) ( )* * *1 = , ,+ ⋅ + ⋅ ⋅∑ ∑i i cls i i i reg i i
i icls reg
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 	          (5)

where, i represents the i-th anchor’s point, Pi is the prob-
ability of the anchor is an object, *

ip  is 1 if the anchor is la-
belled positive, or is 0 if the anchor is negative, ti represents 
the predicted bounding box’s four parameterized coordinates 
and t is the ground-truth box associated with the positive an-
chor. Lcls is log loss, Ncls and Nreg represent the normalization 
values, Ncls values 256 and Nreg values 2400 as default, but λ 
is adopted to balance regression and classifier accordingly. 
The regression calculation of the anchor box to the adjacent 
ground truth value bounding box is specified as follows:

* * * *
* * * *

  ,   ,   log ,   log

  ,   , t   log ,   log

− − = = = =



− − = = = =


a
x y w h

x y w h

x x y y w ht t t t
w h w h

x x y y w ht t t
w h w h

α

α α α α

α α

α α α α

     (6)

where, x and y represent the coordinates of the proposed 
region, and w and h express the region’s width and height. 
For a specific anchor, x represents the predicted bounding 
box, xa expresses the anchor and the ground truth box is rep-
resented by x*.

The non-maximum suppression (NMS) algorithm is used 
to find the best bounding box for each object and eliminate 
redundant bounding boxes. The NMS algorithm select the 
bounding box A with the highest score from the generated 
series of bounding boxes B, puts A in the final detection re-
sult D, removes A from B and sets an Intersection over Union 
(IoU) threshold, the remaining boxes with the IoU of M great-
er than the threshold is removed from B. The NMS algorithm 
repeats the above operation by selecting the bounding box 
with the highest score in the remaining boxes B until B is emp-
ty and finally outputs the result R. The NMS algorithm can be 
defined as follows [6]:

( )
( )

, ,
  

0, IoU ,

<= 
≥

i i
i

i

s IoU M B T
s

M B T
 		            (7)

where T is the threshold of IoU defined above. It can be 
known that boxes with IoU higher than the threshold is di-
rectly removed from the remaining boxes B, which may result 
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results for the networks VGG16net on MS COCO for different 
region proposals, shown in Table 3. The following is the graph 
of mAP values of the VGG16 net at 1800 proposals on PASCAL 
VOC 2012 mAP values of each object class Figure 5.

In order to achieve the required performance, it is nec-
essary to appropriately reduce the size of the model and the 
operation numbers in the forward pass. Therefore, different 
experiments are conducted, including removing the convo-
lutional layer, replacing two fully connected layers with a 
single layer, replacing the fully connected layer with a full 
convolutional layer, and reducing the width of the convo-
lutional layer (i.e., the filter size) and compare their per-
formance, the final results tested on MS COCO dataset are 
shown in Table 4.

Figure 6 shows the performance of the original method 
and the method proposed in this paper, and the compari-
son of the two kinds of pooling methods, Figure 6a shows 
the effect of the normal method, and Figure 6b shows the 
effect of the optimized method proposed in this paper. It 
can be seen that some objects with more overlapping ar-
eas (the woman in the right corner) can also be correctly 
identified. Figure 7 shows the overall comparison, the two 
images show the effect diagrams of Ren, et al. and the ef-
fect diagrams in this paper. It can be noticed that in Figure 
7a the plant in the red pot was wrongly detected as two 
plants, and in Figure 7b this mistake is corrected. Figure 8 
shows some test result on our self-built dataset. Objects 
such as cups, bowls, bottles can be correctly detected in our 
experiments. There are about 400 pictures in our self-built 
dataset, and the accuracy rate is about 95% in our experi-
ments. Light and resolution of the pictures will affect the 
accuracy of detection. Figure 9 is the example case of the 
simulated recognition in the simulated system, the left im-
age shows that the humanoid manipulator detects a cube, 
and the right image shows the humanoid manipulator with 
two hands moves precisely to the cube and can grasp it.

ployed as the backbone network. The code is based on the 
official Faster R-CNN code implemented on the TensorFlow 
platform. And the backbone networks are pre-trained on 
the large dataset ImageNet and then fine-tuned on the de-
tection dataset. The network is trained with the stochastic 
gradient descent (SGD), and two images are applied per 
minibatch for training and minibatch size is set to 128. 
Each dataset is trained for 11 epochs with an initial learn-
ing rate of 0.001, which is then divided by 10 at epoch 7 
and again at epoch 10. The weight decay of 0.0001 and 
the momentum of 0.9 are used respectively. The dropout 
method is also adopted to avoid overfitting and the proba-
bility of random culling is set to 0.5.

The first experiment is to test the performance of the dif-
ferent numbers of the region proposals. The following are the 

         

Figure 4: Simulated system of the humanoid robot manipulators platform.

Table 3: The results for the networks VGG16net on MS COCO dataset.

Metrics COCO VGG

2000 Proposals

COCO VGG

1800 Proposals

COCO VGG

1000 Proposals

AP 0.428 0.420 0.340

AP.50 0.590 0.579 0.465

AP.75 0.472 0.453 0.380

APS 0.254 0.237 0.172

APM 0.433 0.421 0.290

APL 0.511 0.490 0.383

ARS 0.451 0.438 0.391

ARM 0.592 0.586 0.520

ARL 0.650 0.647 0.578

Where, AP: Average Precision; AP.50: Average Precision at IoU: 
0.5; AP.75: Average Precision at IoU: 0.75; APS: Average Precision 
for small objects; APM: Average Precision for medium objects; APL: 
Average Precision for large objects; ARS: Average Recall for small 
objects; ARM: Average Recall for medium objects; ARL: Average 
Recall for large objects.
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carried out through the simulation platform, and obtained 
relatively good performance. In the meantime, further re-
search and experiments are needed to improve the reli-
ability and practicability of the entire simulation platform 
in order to make our research practical. We also need to 
do further research on the motion trajectory planning of a 
humanoid robot to improve its flexibility.

Conclusions
In this paper, the region-based Faster R-CNN is used 

for object detection, and a system that combines Faster 
R-CNN with the humanoid robot simulation platform for 
object recognition is proposed. Certain performance im-
provement is obtained by optimizing the original convo-
lutional network, and further experimental research is 

         

Figure 5: AP values for VGGnet on PASCAL VOC 2012 dataset.

         

(a) (b)
Figure 6: Comparison of the two kinds of pooling methods: a) The effect of the normal method; b) The effect of the optimized method 
proposed.

Table 4: Various performance on MS COCO dataset.

Faster R-CNN proposals net AP@ 0.5 AP mAP Test time (sec/img)

Baseline from He, et al. RPN, C4 2fc 47.3 26.3 21.9 3.36

Baseline with conv5 RPN, C5 2fc 51.7 30.6 30.9 3.31

Baseline with conv4 and conv5 RPN, C4, C5 2fc 53.6 32.3 31.6 3.02

Baseline with conv4 and con5 RPN, C4, C5 2 fully conv 53.8 32.1 31.8 2.83
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view of recent research. Advanced Robotics 31: 821-835.

2.	 Jiang Q, Tan D, Li Y, et al. (2020) Object detection and classifi-
cation of metal polishing shaft surface defects based on convo-
lutional neural network deep learning. Applied Sciences 10: 87.

3.	 Ren Y, Zhu C, Xiao S (2018) Small object detection in optical re-
mote sensing images via modified faster R-CNN. Applied Scienc-
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Acknowledgments
This work was supported by the National Natural Science 

Foundation of China (Grant No. 61573145), the Public Re-
search and Capacity Building of Guangdong Province (Grant 
No. 2014B010104001) and the Basic and Applied Basic Re-
search of Guangdong Province (Grant No. 2015A030308018).

References
1.	 Pierson HA, Gashler MS (2017) Deep learning in robotics: A re-

         

(a) (b)
Figure 7: Overall comparison: a) The effect diagrams of Ren, et al. [9]; b) The effect of the optimized method proposed.

         

(a) (b) (c)
Figure 8: Some test results on the test set of our self-built dataset.

         

(a) (b)
Figure 9: Example case of the simulated recognition in the simulated system: a) The humanoid manipulator detects a cube; b) The 
humanoid manipulator with two hands moves precisely to the cube and can grasp.

https://www.tandfonline.com/doi/abs/10.1080/01691864.2017.1365009
https://www.mdpi.com/2076-3417/10/1/87
https://www.mdpi.com/2076-3417/10/1/87
https://www.mdpi.com/2076-3417/10/1/87
https://www.mdpi.com/2076-3417/8/5/813
https://www.mdpi.com/2076-3417/8/5/813
https://www.mdpi.com/2076-3417/8/5/813
https://www.mdpi.com/2072-4292/10/3/400
https://www.mdpi.com/2072-4292/10/3/400
https://www.tandfonline.com/doi/abs/10.1080/01691864.2017.1365009


Citation: Xiao M, Xiao N, Zeng M, et al. (2020) Optimized Convolutional Neural Network-Based Object Recognition for Humanoid Robot. J 
Robotics Autom 4(1):122-130

Xiao et al. J Robotics Autom 2020, 4(1):122-130 Open Access |  Page 130 |

23.	Wu L, Li H, He J, et al. (2019) Traffic sign detection method based 
on Faster R-CNN. Journal of Physics: Conference Series. IOP Pub-
lishing 1176: 032045.

24.	Xi X, Yu Z, Zhan Z, et al. (2019) Multi-task cost-sensitive-convo-
lutional neural network for car detection. IEEE Access 7: 98061-
98068.

25.	Ruiz-del Solar J, Loncomilla P, Soto N (2018) A survey on deep 
learning methods for robot vision.

26.	Lenz I, Lee H, Saxena A (2015) Deep learning for detecting ro-
botic grasps. The International Journal of Robotics Research 34: 
705-724.

27.	Pinto L, Gupta A (2016) Supersizing self-supervision: Learning to 
grasp from 50k tries and 700 robot hours. 2016 IEEE Internation-
al Conference on Robotics and Automation (ICRA), 3406-3413.

28.	Noda K, Arie H, Suga Y, et al. (2014) Multimodal integration 
learning of robot behavior using deep neural networks. Robotics 
and Autonomous Systems 62: 721-736.

29.	Yu J, Weng K, Liang G, et al. (2013) A vision-based robotic grasp-
ing system using deep learning for 3D object recognition and 
pose estimation. 2013 IEEE International Conference on Robot-
ics and Biomimetics (ROBIO), 1175-1180.

30.	Zhang F, Leitner J, Milford M, et al. (2015) Towards vision-based 
deep reinforcement learning for robotic motion control.

31.	Gu S, Holly E, Lillicrap T, et al. (2017) Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy up-
dates. 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), 3389-3396.

32.	Lokanath M, Sai KK, Sanath KE (2017) Accurate object classifica-
tion and detection by faster-RCNN. IOP Conference Series: Ma-
terials Science and Engineering 263: 052028.

33.	Zhang D, Li J, Xiong L, et al. (2019) Cycle-consistent domain adap-
tive faster RCNN. IEEE Access 7: 123903-123911.

34.	Zhang Z, Zhou X, Chan S, et al. (2017) Faster R-CNN for small traf-
fic sign detection. CCF Chinese Conference on Computer Vision, 
155-165.

35.	Roh MC, Lee JY (2017) Refining faster-RCNN for accurate object 
detection. 2017 Fifteenth IAPR International Conference on Ma-
chine Vision Applications, 514-517.

36.	Ji H, Gao Z, Mei T, et al. (2019) Improved faster R-CNN with mul-
tiscale feature fusion and homography augmentation for vehicle 
detection in remote sensing images. IEEE Geoscience and Re-
mote Sensing Letters 16: 1761-1765.

37.	Rohmer E, Singh SP, Freese M (2013) V-REP: A versatile and scal-
able robot simulation framework. 2013 IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 1321-1326.

38.	Xie M, Zhou D, Shi Y, et al. (2018) Virtual experiments design 
for robotics based on V-REP. IOP Conference Series: Materials 
Science and Engineering 428: 012069.

39.	Everingham M, Van Gool L, Williams CK, et al. (2010) The PAS-
CAL visual object classes (voc) challenge. Int J Comput Vis 88: 
303-338.

40.	Lin TY, Maire M, Belongie S, et al. (2014) Microsoft coco: Com-
mon objects in context. European Conference on Computer Vi-
sion, 740-755.

Remote Sensing 10: 400.

5.	 Liu L, Ouyang W, Wang X, et al. (2020) Deep learning for gener-
ic object detection: A survey. International Journal of Computer 
Vision 128: 261-318.

6.	 Cao C, Wang B, Zhang W, et al. (2019) An improved faster R-CNN 
for small object detection. IEEE Access 7: 106838-106846.

7.	 Zhan C, Duan X, Xu S, et al. (2007) An improved moving object 
detection algorithm based on frame difference and edge detec-
tion. Fourth International Conference on Image and Graphics 
(ICIG 2007), 519-523.

8.	 Dalal N, Triggs B (2005) Histograms of oriented gradients for 
human detection. 2005 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR'05).

9.	 Ren S, He K, Girshick R, et al. (2015) Faster r-cnn: Towards re-
al-time object detection with region proposal networks. Advanc-
es in Neural Information Processing Systems, 91-99.

10.	Rawat W, Wang Z (2017) Deep convolutional neural networks 
for image classification: A comprehensive review. Neural com-
put 29: 2352-2449.

11.	Levine S, Pastor P, Krizhevsky A, et al. (2018) Learning hand-eye 
coordination for robotic grasping with deep learning and large-
scale data collection. The International Journal of Robotics Re-
search 37: 421-436.

12.	Liu W, Anguelov D, Erhan D, et al. (2016) Ssd: Single shot multi-
box detector. European Conference on Computer Vision, 21-37.

13.	Ju M, Luo J, Zhang P, et al. (2019) A simple and efficient network 
for small target detection. IEEE Access 7: 85771-85781.

14.	Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classifica-
tion with deep convolutional neural networks. Advances in Neu-
ral Information Processing Systems, 1097-1105.

15.	 He K, Zhang X, Ren S, et al. (2015) Spatial pyramid pooling in deep 
convolutional networks for visual recognition. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 37: 1904-1916.

16.	Girshick R (2015) Fast r-cnn. 2015 IEEE International Conference 
on Computer Vision, 1440-1448.

17.	Redmon J, Divvala S, Girshick R, et al. (2016) You only look once: 
Unified, real-time object detection. 2016 IEEE Conference on 
Computer Vision and Pattern Recognition, 779-788.

18.	Redmon J, Farhadi A (2017) YOLO9000: Better, faster, stronger. 
2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, 7263-7271.

19.	Redmon J, Farhadi A (2018) Yolov3: An incremental improve-
ment.

20.	 Sun X, Wu P, Hoi SC (2018) Face detection using deep learning: An 
improved faster RCNN approach. Neurocomputing 299: 42-50.

21.	Saqib M, Khan SD, Sharma N, et al. (2019) Crowd counting in 
low-resolution crowded scenes using region-based deep convo-
lutional neural networks. IEEE Access 7: 35317-35329.

22.	Tzelepi M, Tefas A (2017) Human crowd detection for drone 
flight safety using convolutional neural networks. 2017 25th Eu-
ropean Signal Processing Conference (EUSIPCO), 743-747.

Copyright: © 2020 Xiao, et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

SCHOLARS.DIRECT

DOI: 10.36959/673/363

https://iopscience.iop.org/article/10.1088/1742-6596/1176/3/032045/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1176/3/032045/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1176/3/032045/meta
https://ieeexplore.ieee.org/abstract/document/8758872
https://ieeexplore.ieee.org/abstract/document/8758872
https://ieeexplore.ieee.org/abstract/document/8758872
https://arxiv.org/ftp/arxiv/papers/1803/1803.10862.pdf
https://arxiv.org/ftp/arxiv/papers/1803/1803.10862.pdf
https://journals.sagepub.com/doi/10.1177/0278364914549607
https://journals.sagepub.com/doi/10.1177/0278364914549607
https://journals.sagepub.com/doi/10.1177/0278364914549607
https://ieeexplore.ieee.org/document/7487517
https://ieeexplore.ieee.org/document/7487517
https://ieeexplore.ieee.org/document/7487517
https://www.sciencedirect.com/science/article/pii/S0921889014000396
https://www.sciencedirect.com/science/article/pii/S0921889014000396
https://www.sciencedirect.com/science/article/pii/S0921889014000396
https://ieeexplore.ieee.org/document/6739623
https://ieeexplore.ieee.org/document/6739623
https://ieeexplore.ieee.org/document/6739623
https://ieeexplore.ieee.org/document/6739623
http://www.araa.asn.au/acra/acra2015/papers/pap168.pdf
http://www.araa.asn.au/acra/acra2015/papers/pap168.pdf
https://ieeexplore.ieee.org/document/7989385
https://ieeexplore.ieee.org/document/7989385
https://ieeexplore.ieee.org/document/7989385
https://ieeexplore.ieee.org/document/7989385
https://iopscience.iop.org/article/10.1088/1757-899X/263/5/052028
https://iopscience.iop.org/article/10.1088/1757-899X/263/5/052028
https://iopscience.iop.org/article/10.1088/1757-899X/263/5/052028
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822427
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8822427
https://ieeexplore.ieee.org/document/7986913
https://ieeexplore.ieee.org/document/7986913
https://ieeexplore.ieee.org/document/7986913
https://ieeexplore.ieee.org/document/8694857
https://ieeexplore.ieee.org/document/8694857
https://ieeexplore.ieee.org/document/8694857
https://ieeexplore.ieee.org/document/8694857
https://s3-us-west-2.amazonaws.com/ieeeshutpages/xplore/xplore-ie-notice.html?
https://s3-us-west-2.amazonaws.com/ieeeshutpages/xplore/xplore-ie-notice.html?
https://s3-us-west-2.amazonaws.com/ieeeshutpages/xplore/xplore-ie-notice.html?
https://iopscience.iop.org/article/10.1088/1757-899X/428/1/012069
https://iopscience.iop.org/article/10.1088/1757-899X/428/1/012069
https://iopscience.iop.org/article/10.1088/1757-899X/428/1/012069
http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf
http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf
http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham10.pdf
https://www.mdpi.com/2072-4292/10/3/400
https://ieeexplore.ieee.org/abstract/document/8786135
https://ieeexplore.ieee.org/abstract/document/8786135
https://ieeexplore.ieee.org/document/4297140
https://ieeexplore.ieee.org/document/4297140
https://ieeexplore.ieee.org/document/4297140
https://ieeexplore.ieee.org/document/4297140
https://ieeexplore.ieee.org/document/1467360
https://ieeexplore.ieee.org/document/1467360
https://ieeexplore.ieee.org/document/1467360
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://www.ncbi.nlm.nih.gov/pubmed/28599112
https://www.ncbi.nlm.nih.gov/pubmed/28599112
https://www.ncbi.nlm.nih.gov/pubmed/28599112
https://journals.sagepub.com/doi/full/10.1177/0278364917710318
https://journals.sagepub.com/doi/full/10.1177/0278364917710318
https://journals.sagepub.com/doi/full/10.1177/0278364917710318
https://journals.sagepub.com/doi/full/10.1177/0278364917710318
https://ieeexplore.ieee.org/abstract/document/8746190
https://ieeexplore.ieee.org/abstract/document/8746190
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://ieeexplore.ieee.org/document/7005506
https://ieeexplore.ieee.org/document/7005506
https://ieeexplore.ieee.org/document/7005506
https://ieeexplore.ieee.org/document/7410526
https://ieeexplore.ieee.org/document/7410526
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/7780460
https://ieeexplore.ieee.org/document/8100173
https://ieeexplore.ieee.org/document/8100173
https://ieeexplore.ieee.org/document/8100173
https://arxiv.org/pdf/1804.02767.pdf
https://arxiv.org/pdf/1804.02767.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0925231218303229
https://www.sciencedirect.com/science/article/abs/pii/S0925231218303229
https://ieeexplore.ieee.org/document/8669755
https://ieeexplore.ieee.org/document/8669755
https://ieeexplore.ieee.org/document/8669755
https://ieeexplore.ieee.org/document/8081306
https://ieeexplore.ieee.org/document/8081306
https://ieeexplore.ieee.org/document/8081306

	Title
	Abstract
	Keywords
	Introduction
	Related Work 
	Two-stage object detection methods 
	One-stage object detection methods 
	Researches on robot recognition and object detection 

	System Overview 
	Hardware specifications 
	Humanoid robotic hand kinematics 

	Object Detection and Simulation 
	Experiment Schemes and Results 
	Conclusions
	Acknowledgments
	Table 1
	Table 2
	Table 3
	Table 4
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	References

