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Introduction
Climate change induced by emission of green house gas 

can cause severe drought [1,2]. The higher plants adopt nu-
merous mechanisms to cope with drought. The role of protein 
kinase gene family in drought stress response was revealed 
by many genome-wide gene expression profiling studies and 
pointed that the drought stress response given by them are 
efficient, fast-acting and reversible [3-5] responses to many 
environmental stresses such as salinity, cold and drought [6]. 
The changes in concentration levels of Ca2+ are recognized 
by several Ca2+ binding proteins including calmodulin (CaM), 
calmodulin like proteins (CMLs), Ca2+-dependent protein ki-
nases (CDPKs) and calcineurin B-like proteins (CBLs) and re-
sults in downstream responses [7,8]. CDPKs are exceptional 
in this category as they have a kinase domain and other three 
Ca2+ sensors had no enzymatic domains. Except CDPKs, other 
Ca2+ sensors interact with their respective target proteins and 
modulate their activity [8]. Whereas, CDPKs serves as special 
sensor as they directly initiate the downstream phosphoryla-
tion events up on Ca2+ binding due to the presence of CaM like 
and protein kinase domains [9]. The target protein of CBLs is 
referred to as CBL-interaction protein kinases (CIPKs) [7] and 
is also known as SnRK3. CIPK proteins consist of a conserved 
N-terminal kinase domain followed by junction domain and 
C-terminal regulatory domain. The Ca2+ bound CBL proteins 
interact with target protein CIPK through a conserved NAF/
FISL motif at the C terminal regulatory domain of CIPK and 
activate its catalytic activity [10]. Total of 33 CIPKs was iden-

tified in rice through bioinformatics analysis [11,12], 43 CIPKs 
are identified in maize [13] and 32 CIPKs are identified in sor-
ghum [14]. CIPKs are reported to be expressed in response 
to various stresses. Over expression of OsCIPK23 improved 
drought tolerance in rice [15]. In Arabidopsis AtCIPK24 and 
AtCIPK7 contribute to salt and cold stress [16,17]. A cotton 
CIPK gene GhCIPK6 was over expressed in Arabidopsis and 
found that the tolerance of the plant increased in drought 
stress [18].

The present study intended to expose the characteris-
tics of potential drought responsive ortholog genes in maize 
and sorghum by comparative analysis of them with the ex-
perimentally proven drought responsive genes of rice. The 
drought responsive rice genes of CIPKs (CIPK1, CIPK2, CIPK5, 
CIPK9, CIPK11, CIPK12, CIPK15, CIPK17, CIPK20, CIPK21, 
CIPK22, CIPK23, CIPK24, CIPK29 and CIPK 30) [19] were se-
lected for the study as they have experimental evidences.
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database of expression data collected from variety of public 
repositories including Gene Expression Omnibus [28] and 
Array Express [29] (https://www.ebi.ac.uk/arrayexpress/). 
The gene expression at various development stages were 
observed for all the species. For rice, Affymetrix Rice Ge-
nome Array platform was used with water deficit microar-
ray datasets GSE6901, GSE14275, GSE26280, E-MEXP-2401, 
GSE25176, GSE23211, GSE31077, GSE42683, GSE81253, 
GSE41647, GSE80246, GSE83378, and GSE57154. For maize, 
Affymetrix Maize Genome Array and mRNA- Seq Gene Level 
Zea Mays (ref: AGPV4) platforms were used with water defi-
cit microarray datasets GSE16567, GSE43088 and GSE59533. 
In the case of sorghum the selected genes were analyzed for 
expression at various growing stage by using the Affymetrix 
Whole- transcriptome Sorghum Array platform with data-
set GSE49879. The drought stress expression profile was 
analyzed using dataset GSE80699. The seven development 
stages in rice were considered for the analysis and they were 
seedling, tillering, stem elongation, booting, heading, flower-
ing and milk stages. Three stages were considered in maize 
viz., seedling, stem elongation and anthesis. Five stages were 
included in sorghum analysis viz., seedling, stem elongation, 
booting, flowering and dough stages.

Results and Discussion

Analysis of protein properties
The nature of the proteins was analyzed by using phys-

iochemical properties such as isoelectric point (pI), molecu-
lar weight, instability index and grand average of hydropathy 
(GRAVY). The pI value of the proteins ranged from 5.32 to 9.53 
(Table 1). It shows that CIPK proteins have heterogeneous na-
ture. Molecular weight of the proteins ranged from 40347.82 
to 110358.1 Da. The variation in molecular weight among the 
members of the same group exists due to the variable num-
ber of domains contributing to protein size difference [30]. 
Except A0A1D6N844 all the other proteins exhibited hydro-
philic nature since they had a negative GRAVY score [31]. In-
stability index showed that 26.5% proteins were unstable and 
73.5% proteins were stable.

Phylogenetic analysis
To understand the evolutionary relationship of the 

drought responsive genes of CIPK gene family a rooted phy-
logenetic tree was constructed (Figure 1). Two major groups 
were identified from the analysis and the Group II had sub-
division. Group I consisted of 3 members of rice, 5 members 
of maize and 3 members of sorghum. This group was found 
to be the smallest group. Group II (A) consisted of 3 mem-
bers of rice, 7 members of maize and 3 members of sorghum. 
The largest group was Group II (B) which consisted total of 25 
members; 5 from rice, 13 from maize and 7 from sorghum. 
The estimated value of the shape parameter for the discrete 
Gamma Distribution was 0.7910. Total of 5 categories were 
considered in the analysis of sites. Mean evolutionary rates 
in these categories were 0.07, 0.29, 0.63, 1.20, 2.81 substi-
tutions per site. As the shape parameter is small most of the 
sites evolved very slowly in the evolutionary tree [32].

Materials and Methods

Datasets
Genomic, CDS and protein sequences of rice genes were 

retrieved from Rice Genome Annotation Project (http://rice.
plantbiology.msu.edu). Ensembl Plants (http://plants.ensem-
bl.org) and NCBI (https://www.ncbi.nlm.nih.gov) were used 
for retrieving maize and sorghum gene sequences. The re-
trieved protein sequences of rice were subjected to a BLASTp 
(https://blast.ncbi.nlm.nih.gov) analysis to find the ortholo-
gous genes in maize and sorghum by means of reciprocal best 
hit approach. The protein sequences which showed identity ≥ 
75% were considered as orthologous. The orthologous genes 
for CIPK 20, CIPK 22, CIPK 29 and CIPK 30 were not identi-
fied in sorghum and maize. Therefore a total of 49 protein 
sequences were analyzed further which included the homo-
logues sequences of rice in sorghum and maize.

Phylogenetic analysis
The multiple sequence alignment of 49 full length protein 

sequences of all the three species were constructed using 
CLUSTALW [20]. Phylogenetic tree was constructed by using 
Neighbor-Joining method by considering 1,000 rapid boot-
strap replicates with the help of MEGA X [21] and it was visu-
alized using iTOL (http://itol.embl.de). The aligned sequence 
file was also used for finding out the discrete Gamma distri-
bution to recognize the evolutionary rate difference. Number 
of discrete categories used for the analysis was 5. Substitu-
tion pattern and rates were estimated under the Jones-Tay-
lor-Thornton [22] model (+G) [22]. The tree topology was au-
tomatically computed in MEGA X for estimating ML values.

Characterization of phylogenetic groups
The gene structures of all the genes were predicted by 

aligning the coding sequence with its corresponding genomic 
sequence by using GSDS 2.0 server (http://gsds.cbi.pku.edu.
cn). GSDS 2.0 is an improved version of GSDS and it supports 
two more widely used annotation formats, providing more 
comprehensive support for annotation files. To identify the 
conserved motifs in each group, the complete sequence of 
proteins at the groups were submitted to MEME suite (http://
meme.sdsc.edu/meme/) [23]. This tool discovers the un-
gapped motifs in the sequence and splits the variable-length 
patterns in to more than two unique motifs. For the analysis 
we used the optimum width of motifs ranging from 12 to 60 
by setting the search for 5 best motifs. The identified motifs 
were annotated by using Motif Scan (https://myhits.isb-sib.
ch/cgi-bin/motif_scan) and InterProScan (https://www.ebi.
ac.uk/interpro/search/sequence-search) [24]. The conserved 
domains were identified by Pfam [25]. Physiochemical prop-
erties of proteins were analyzed by using ProtParam tool 
available on ExPasy proteomics server (http://web.expasy.
org/compute_pi) [26].

Gene expression analysis
To understand the function of the genes, expression pat-

tern under drought stress was analyzed using GENEVESTIGA-
TOR [27], which has a manually curated and well annotated 
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Table 1: Physiochemical properties of the selected proteins.

Sl. No Protein ID Protein name Gene pI MW GRAVY I-I

1 Q0D4B2 CBL-interacting protein kinase 21 LOC_Os07g44290 9.26 59116.06 -0.427 43.15

2 A0A1D6F286 Non-specific serine/threonine protein kinase Zm00001d006944 5.32 41113.77 -0.343 39.58

3 C4P7S5 Non-specific serine/threonine protein kinase SORBI_3002G390100 8.79 50265.89 -0.351 31.8

4 Q75L42 CBL-interacting protein kinase 17 LOC_Os05g04550 6.93 50915.03 -0.395 34.14

5 A0A1Z5R1F1 Non-specific serine/threonine protein kinase SORBI_3009G034200 6.33 51772.04 -0.351 39.14

6 B6T3T6 Non-specific serine/threonine protein kinase Zm00001d024762 6.61 46241.68 -0.328 45.77

7 A0A3L6G7R0 Non-specific serine/threonine protein kinase Zm00014a023444 5.84 40347.82 -0.328 41.12

8 Q9LGV5 CBL-interacting protein kinase 1 LOC_Os01g18800 6.26 52201.57 -0.403 38.1

9 C4P7T1 Non-specific serine/threonine protein kinase SORBI_3003G139500 6.55 51915.56 -0.306 40.48

10 B6TDE7 Non-specific serine/threonine protein kinase Zm00001d040567 7.2 51328.93 -0.298 39.79

11 A0A3L6FJ45 Non-specific serine/threonine protein kinase Zm00014a022070 8.43 49785.37 -0.303 40.46

12 Q69Q47 CBL-interacting protein kinase 24 LOC_Os06g40370 8.52 50935.69 -0.202 35.67

13 B4FFI0 Non-specific serine/threonine protein kinase Zm00001d000407 8.61 50809.36 -0.219 29.19

14 A0A3L6D8S8 Non-specific serine/threonine protein kinase Zm00014a001662 8.64 51381.96 -0.219 29.78

15 C4P7U7 Non-specific serine/threonine protein kinase SORBI_3010G186300 8.79 50415.05 -0.188 32.15

16 A0A1D6LS89 Non-specific serine/threonine protein kinase Zm00001d036879 8.95 50798.5 -0.247 34.36

17 Q6ZLP5 CBL-interacting protein kinase 23 LOC_Os07g05620 9.23 50708.19 -0.408 38.92

18 C4P7S2 Non-specific serine/threonine protein kinase SORBI_3002G034700 9.16 50702.31 -0.387 35.97

19 C0P7R9 Non-specific serine/threonine protein kinase Zm00001d018799 9.16 50649.16 -0.402 35.73

20 Q10SC8 CBL-interacting protein kinase 9 LOC_Os03g03510 7.17 51033.5 -0.378 36.82

21 C0P6L2 Non-specific serine/threonine protein kinase Zm00001d048460 7.18 50501.78 -0.414 32.05

22 A0A3L6DBD2 Non-specific serine/threonine protein kinase Zm00014a016888 7.18 50529.79 -0.415 32.48

23 C0P3A2 Non-specific serine/threonine protein kinase Zm00001d027455 7.26 50088.4 -0.388 36.62

24 C4P7S1 Non-specific serine/threonine protein kinase SORBI_3001G523200 7.64 50280.61 -0.402 32.71

25 Q5JLS2 CBL-interacting protein kinase 12 LOC_Os01g55450 8.3 59807.67 -0.285 48.23

26 C4P7T3 Non-specific serine/threonine protein kinase SORBI_3003G302800 8.93 56989.73 -0.26 43.4

27 C0P7I2 Non-specific serine/threonine protein kinase Zm00001d043389 8.84 57268.12 -0.296 45.2

28 Q9LWM4 CBL-interacting protein kinase 5 LOC_Os01g10890 9.28 51965.79 -0.402 33.26

29 C4P7S9 Non-specific serine/threonine protein kinase SORBI_3003G024400 9.26 50830.45 -0.338 36.61

30 A0A3L6DLL0 Non-specific serine/threonine protein kinase Zm00014a022960 9.17 50985.68 -0.366 36.16

31 B4F898 Non-specific serine/threonine protein kinase Zm00001d008901 9.17 50985.68 -0.366 36.16

32 Q7X996 CBL-interacting protein kinase 2 LOC_Os07g48100 9.18 50272.36 -0.421 28.7

33 B6SXL5 Non-specific serine/threonine protein kinase Zm00001d007167 9.13 52709.9 -0.422 39.29

34 A0A3L6FZX2 Non-specific serine/threonine protein kinase Zm00014a043100 9.13 52709.9 -0.422 39.29

35 A0A1B6QG91 Non-specific serine/threonine protein kinase SORBI_3002G417300 9.22 49984.95 -0.401 29.67

36 A0A0B4J3D8 Non-specific serine/threonine protein kinase Zm00001d022450 9.12 51349.25 -0.475 37.33

37 A0A3L6DWK7 Non-specific serine/threonine protein kinase Zm00014a022344 9.12 51321.14 -0.488 35.5

38 Q2RBF0 CBL-interacting protein kinase 15 LOC_Os11g02240 9.53 49697.65 -0.398 36.91

39 C4P7T9 Non-specific serine/threonine protein kinase SORBI_3008G032000 9.28 50721.66 -0.461 31.64

40 C4P7T5 Non-specific serine/threonine protein kinase SORBI_3005G012000 9.33 50375.25 -0.423 34.81

41 B1A5P6 Non-specific serine/threonine protein kinase Zm00001d052340 9.22 50000.8 -0.392 29.29

42 A0A3L6FA20 Non-specific serine/threonine protein kinase Zm00014a039214 9.17 50087.83 -0.416 30.26

43 B4FXZ1 Non-specific serine/threonine protein kinase Zm00001d052340 9.17 50087.83 -0.416 30.26

https://plants.ensembl.org/Sorghum_bicolor/Gene/Summary?g=SORBI_3001G523200;r=1:78807314-78814307;t=EER92947;db=core
https://plants.ensembl.org/Sorghum_bicolor/Gene/Summary?g=SORBI_3008G032000;r=8:2865529-2868780;t=EES15653;db=core
https://plants.ensembl.org/Sorghum_bicolor/Gene/Summary?g=SORBI_3005G012000;r=5:1100643-1103491;t=EES09124;db=core
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present in ≥ 4 introns and 3 introns category. The loss or gain 
of introns could have played in grouping of CIPK genes. The 
variation in the number of introns among the three Groups 
points to the genome evolution by means of selection pres-
sure and population size [33,34]. Moreover the intron rich 
behavior of the genes will add to the functional diversity 
through alternate splicing and exon shuffling [35]. Therefore 
the intron rich Group I and II (A) genes might be involved in 
multiple pathways in response to various abiotic stress sig-
nals. The intronless feature of Group II (B) CIPK genes strongly 
indicates that they are single stress inducible genes and pos-
sibly the stress is drought [36]. The significance of intron poor 
genes in drought tolerance was analyzed by Zhu, et al. [36], 
and proved its role in soybean CIPK-intron poor clade genes.

The conserved motifs and their organization were identi-
fied in each group (Figure 1). It was found that all the motifs 

Characterization of the Groups by gene structure 
analysis, motif analysis and protein properties 
analysis

The characterization of the phylogenetic groups was car-
ried out by gene structure analysis which showed the diver-
gence among the groups. Above 60% of the genes in Group I 
had ≥ 4 introns. All the sorghum genes belonged to this cate-
gory (Figure 2). In rice and sorghum 40% and 20% genes were 
intronless respectively. All the genes in Group II (A) showed 
intron richness (≥ 4 introns). The Group II (B) dominated in in-
tronless feature. In this category all the sorghum genes were 
intronless. In the case of rice, 80% of genes were intronless 
and 20% of genes belonged to the category of genes with sin-
gle intron. Similarly, 84% of genes in maize were intronless 
and an equal distribution of genes (8% in each category) was 

44 C4P7T4 Non-specific serine/threonine protein kinase SORBI_3004G049500 9.19 52737.53 -0.484 39.47

45 A0A3L6EKG2 Non-specific serine/threonine protein kinase Zm00014a013270 8.83 48888.8 -0.5 43.83

46 C0PK96 Non-specific serine/threonine protein kinase Zm00001d015325 8.99 53633.23 -0.506 43.71

47 Q0JI49 CBL-interacting protein kinase 11 LOC_Os01g60910 8.48 56558.9 -0.448 43.73

48 A0A1D6N844 Non-specific serine/threonine protein kinase Zm00001d043038 6.65 110358.1 0.068 40.82

49 A0A1B6Q6U3 Non-specific serine/threonine protein kinase SORBI_3003G339700 7.59 58316.97 -0.474 44.18

         
Tree scale: 0.1

I

II

II(A)

II(B)

CIPKL ORYSJ
A0A1D6F286 MAIZE

C4P7S5 SORBI
CIPKH ORYSJ

A0A1Z5R1F1 SORBI
B6T3T6 MAIZE

A0A3L6G7R0 MAIZE
CIPK1 ORYSJ

C4P7T1 SORBI
B6TDE7 MAIZE

A0A3L6FJ45 MAIZE
CIPKO ORYSJ
B4FFI0 MAIZE

A0A3L6D8S8 MAIZE
C4P7U7 SORBI

A0A1D6LS89 MAIZE
CIPKN ORYSJ

C4P7S2 SORBI
C0P7R9 MAIZE

CIPK9 ORYSJ
C0P6L2 MAIZE

A0A3L6DBD2 MAIZE
C0P3A2 MAIZE
C4P7S1 SORBI
CIPKC ORYSJ

C4P7T3 SORBI
C0P7I2 MAIZE
CIPK5 ORYSJ

C4P7S9 SORBI
A0A3L6DLL0 MAIZE

B4F898 MAIZE
CIPK2 ORYSJ

B6SXL5 MAIZE
A0A3L6FZX2 MAIZE

A0A1B6QG91 SORBI
A0A0B4J3D8 MAIZE

A0A3L6DWK7 MAIZE
CIPKF ORYSJ

C4P7T9 SORBI
C4P7T5 SORBI
B1A5P6 MAIZE

A0A3L6FA20 MAIZE
B4FXZ1 MAIZE
C4P7T4 SORBI

A0A3L6EKG2 MAIZE
C0PK96 MAIZE
CIPKB ORYSJ

A0A1D6N844 MAIZE
A0A1B6Q6U3 SORBI

Figure 1: A rooted phylogenetic tree of 49 proteins of CIPKs in rice, sorghum and maize with corresponding motif distribution.

https://plants.ensembl.org/Zea_mays/Gene/Summary?g=Zm00001d015325;r=5:84611609-84613021;t=Zm00001d015325_T001;db=core
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Figure 2: Gene structure distribution of A) Group I CIPK genes; B) Group II (A) CIPK genes and; C) Group II (B) CIPK genes.
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Figure 3: Gene expression levels of rice genes at various development stages.
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Table 2: Tissue level expression of genes in rice, maize and sorghum. 

Expression level at tissues

Gene Source High Medium Low

LOC_Os11g02240 Os Leaf, seedling, sheath, panicle, roots, pistil, caryopsis, flag leaf, 
anther

- -

LOC_Os01g18800 Os Leaf, seedling, sheath, panicle, roots, pistil, caryopsis, flag leaf, 
anther

- -

LOC_Os01g60910 Os Caryopsis, panicle, leaf Seedling, sheath, roots, 
pistil, flag leaf, anther

-

LOC_Os01g55450 Os Flag leaf Leaf, seedling, sheath, 
panicle, roots, pistil, 
caryopsis, anther

-

LOC_Os05g04550 Os Pistil, leaf, seedling, flag leaf Anther, root, sheath, 
caryopsis, panicle

-

LOC_Os07g48100 Os Leaf, seedling, sheath, panicle, roots, pistil, caryopsis, flag leaf, 
anther

- -

LOC_Os07g05620 Os  Seedling, sheath, roots, pistil, caryopsis, flag leaf, anther Panicle -

LOC_Os06g40370 Os Leaf, seedling, sheath, panicle, roots, pistil, caryopsis, flag leaf, 
anther

- -

LOC_Os01g10890 Os Anther, pistil, leaf, flag leaf, seedling Sheath, panicle, roots, 
caryopsis

-

LOC_Os07g44290 Os Pistil, seedling, panicle, roots Sheath, caryopsis, leaf, 
anther, flag leaf

-

LOC_Os03g03510 Os Leaf, seedling, panicle, roots, pistil, caryopsis, flag leaf, anther Sheath -

Zm00001d040567 Zm Foliar leaf, shoot, roots - -

Zm00001d022450 Zm Foliar leaf, shoot, roots - -

Zm00001d008901 Zm Foliar leaf, shoot, roots - -

Zm00001d048460 Zm Foliar leaf, shoot, roots - -

Zm00001d015325 Zm - Foliar leaf, shoot, roots -

Zm00001d043389 Zm Foliar leaf, shoot, roots - -

Zm00001d052340 Zm Foliar leaf, shoot, roots - -

Zm00001d036879 Zm - Foliar leaf, shoot, roots -

Zm00001d000407 Zm - Foliar leaf, shoot -

SORBI_3002G034700 Sb Rind, internode, shoot, pith, roots Leaf -

SORBI_3003G139500 Sb Rind, internode, shoot, pith, leaf, roots

development of the plants [12,38]. Hence the expression 
levels at various development stages were analyzed. In rice, 
CIPK genes showed up regulated expression at all the stages 
except 4 genes, LOC_Os11g02240, LOC_Os07g05620, LOC_
Os01g10890 and LOC_Os07g44290 at milk, stem elongation, 
milk and stem elongation and heading stages respectively 
as seen in Figure 3. It is also noted that they possessed high 
expression potential at other stages. The expression level in 
tissues of leaf, seedling, sheath, panicle, roots, pistil, caryop-
sis, flag leaf and anther were analyzed for all the genes and it 
was observed up regulated expression for 4 genes viz., LOC-
Os11g02240, LOC-Os01g18800, LOC-Os07g48100 and LOC-
Os06g40370 respectively in all the selected tissues as depict-
ed in Table 2. Medium level of expression in all the tissues 
were reported for CIPK12 (LOC-Os01g55450).

were part of protein kinase domain. The Protein kinase do-
main which is conserved at the N-terminus included a protein 
kinase ATP binding site followed by serine/threonine protein 
kinase active site. Group I and Group II (A) had similarity in dis-
tribution of motifs which points to their similarity in function. 
In Group I number of motifs varied from 5 to 8 and in Group II 
(A) it was varied from 6-7. Meanwhile, in Group II (B) 5 motifs 
were reported and all of them were highly conserved among 
the members. Motif 1 was either present nearby N-terminus 
or in the N-terminus and it represented a protein kinase ATP 
binding site domain. These domains are glycine rich with ly-
sine residue in vicinity and are located at N terminus [37].

Functional analysis by gene expression level
The CIPK genes play an important role in the growth and 
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SORBI_3003G024400 Sb Leaf Shoot Rind, 
internode, 
pith, roots

SORBI_3001G523200 Sb Rind, internode, shoot, pith, leaf, roots - -

SORBI_3003G339700 Sb - Rind, internode, shoot, pith, 
leaf, roots

-

SORBI_3004G049500 Sb - Rind, internode, shoot, pith, 
leaf, roots

-

SORBI_3003G302800 Sb Rind, internode, shoot, pith, leaf Roots -

SORBI_3005G012000 Sb Rind, leaf Internode, shoot, pith, roots -

SORBI_3008G032000 Sb - Rind, internode, shoot, pith, 
leaf

Roots 

SORBI_3002G390100 Sb Rind, internode, shoot, pith, leaf, roots - -

SORBI_3010G186300 Sb Internode, shoot Rind, pith, leaf, roots -

*Os: Oryza sativa; Zm: Zea mays; Sb: Sorghum bicolor.

logenetic analysis. Maximum number of rice orthologs was 
found in maize. Comparative analysis of the gene structure 
showed that Group II (B) CIPK genes dominated intronless 
feature whereas, Group II (A) CDPK genes and Group I CIPK 
genes dominated intron rich feature. The intron richness in-
dicates that the genes might have included in multiple stress 
signal transduction other than drought. The genes in Group II 
(B) are specifically induced in drought due to their intronless 
feature [36]. Alternate splicing and exon shuffling could be 
the reason for functional diversity among CIPK groups [35]. 
This also points to the adaptation of plants with respect to en-
vironmental changes during evolution which in turn altered 
their phenotypes significantly by transforming the form and 
function of genes [40]. The most common motifs seen among 
the groups were parts of protein kinase domain. The similar 
distribution of motifs in Group I and Group II (A) indicates the 
functional similarity of the groups. Gene expression analysis 
showed that above 80% of the genes in respective groups 
have shown medium or high level expression up on drought 
stress. The similarity in the expression pattern also shows 
their functional similarity [39] and conservation of functions 
between species.
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