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Abstract
Plant-phytopathogen interactions, such as rice-Xanthomonas oryzae pv. oryzae (Xoo) interactions, are important for the 
fate of both the host plant and invading phytopathogen, particularly in the early stage of infection. Thus far, many in vivo 
and in vitro systems have been developed to study the plant-phytopathogen interactions to cause disease or resistance in 
plant and each system has its own merits and limits. In vivo system is easy to monitor the effector translocation from phy-
topathogen to plant and has been used to study the resistance mechanism of plant like Hypersensitivity Response (HR). In 
vitro system is useful to study the pathogenic mechanism of phytopathogen such as pathogenic gene expression. Recently, 
new in vitro system was developed, which enables us to monitor the time-dependent gene expression of phytopathogen 
upon the interaction with host plant. The in vivo and in vitro assay systems will be useful to study the mechanism of phy-
tobacterial pathogenesis and plant resistance.
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Introduction
Hosts and pathogens have competed throughout 

the whole evolutionary history of life. In many cases, 
pathogenic mechanism between plant and phytopathogen 
is well conserved with that between animal and animal 
pathogen [1-3]. At the early stage of infection, plant-
phytopathogen interactions are important for the fate 
of interaction to cause diseases on susceptible plants 
or to elicit Hypersensitive Reactions (HR) on resistant 
plants [4]. Rice is the most widely consumed staple food 
worldwide, especially in Asian countries. The gram-
negative plant pathogen Xanthomonas oryzae pv. oryzae 
(Xoo) is the causal agent of bacterial blight on rice [5], of 
which outbreak easily reduces rice yields by as much as 
50% [6].

In vivo and in vitro systems have been successfully 
developed to study plant-phytopathogen (rice-Xoo) in-
teractions and each system has its own merits and limits 
(Figure 1). The resistance mechanisms of host rice could 
be studied better with the in vivo systems [7], whereas 

for the pathogenic mechanism of phytopathogen the in 
vitro systems are generally more suitable. Recently, a new 
in vitro system, mimicking both the in vivo and in vitro 
systems, was developed, which initiates and activates the 
Xoo pathogenicity by adding fresh rice leaf extracts into 
Xoo culture medium [8]. The in vitro system was also 
combined with RNA-Seq to study the genome-wide gene 
expression of the phytopathogen Xoo.

The Type III Secretion System (T3SS) is a well con-
served protein translocation system in Gram-negative 



• Page 11 •

Citation: Seunghwan KIM, Jeong-Gu KIM, Lin-Woo KANG (2017) Approaches to the Study of Plant-Phytopathogen 
Interactions: In Vivo and In Vitro Assay Systems of Phytobacterial Pathogenesis. J Rice Res Dev 1(1):10-13

Seunghwan et al. J Rice Res Dev 2017, 1(1):10-13 ISSN: 2643-5705  |

phytopathogenic bacteria which infect plants and ani-
mals [9-11], of which components are encoded by Hy-
persensitive Response and Pathogenicity (hrp) genes 
including hrpG and hrpX genes [12]. The T3SS delivers 
bacterial effector proteins into the host cells to modu-
late host defense signaling pathways and cause diseases. 
Currently, the T3SS, hrp genes, and effectors are crucial 
molecules to study the pathogenic mechanism of phyto-
pathogen and resistance of host plant.

In vivo assay system for effector translocation and 
HR

Basically, in vivo assay system consists of phytopathogen 
inoculation on plant and disease or resistance mechanism 

study in plant [13]. The translocation of effector proteins 
from phytopathogenic bacteria to plants via T3SS has 
been successfully monitored in the in vivo system with the 
activity of reporter protein attached to the effectors [14]. 
Calmodulin-Dependent Adenylate Cyclase (cya) domain 
from Bordetella pertussis has been used as a reporter 
protein, which produces cAMP depending on the existence 
of eukaryotic plant calmodulin [14-17]. Accordingly, it is 
active only when it translocates from the prokaryotic cell 
into the eukaryotic host cell. For example, in Xanthomonas 
campestris pv. vesicatoria, as early as 3 h after inoculation, 
the translocation of effector protein AvrBs2 (avrBs2) to 
host pepper plants was confirmed with the in vivo assay 
system [14]. Because the in vivo system uses intact plant, we 
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Figure 1: Three representative in vivo and in vitro assay systems for the study of plant-phytopathogen interactions. In vivo 
system consists of phytopathogen inoculation on plant and is used to study the plant resistance mechanism by monitoring the 
effector translocation from pathogen to host and HR in plant. In vitro assay system using minimal medium is used to upregulate 
hrp genes-like pathogenic gene expression in phytopathogens. In vitro assay system using host leaf extracts activates the 
pathogenicity of phytopathogen by adding host leaf extracts into phytopathogen culture media, which provides genome-wide 
time-dependent gene expression in phytopathogen upon the interaction with plant. 
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could monitor HR-like plant responses resulting from the 
phytopathogen infection.

In vitro assay system for hrp gene expression
In the initial interaction with plant, the quick response of 

pathogenic signal activation in phytopathogen is important 
for successful infection. The pathogenic signaling pathway 
is a good target to develop pesticides against the plant dis-
ease. However, heterogenous phytopathogen population at 
in vivo infection site makes it hard to study the pathogenic-
ity signals such as pathogenicity-related gene expressions. 
Simplified in vitro assay system could be more useful to 
monitor the pathogenic gene expressions in phytopathogen. 
The hrp genes in Gram-negative phytopathogenic bacteria 
including Xoo play important roles for pathogen’s patho-
genicity on host plants [12]. The expression of hrp genes 
is highly controlled and usually up-regulated in certain 
nutrient-poor synthetic media compared to nutrient-rich 
complex media [18-21]. The nutrient-poor synthetic media 
has been used to activate the hrp gene expression in plant 
pathogens xanthomonas such as the synthetic minimal 
medium of XOM2 and XVM2, which is known to mimic 
the apoplast plant environment to activate the pathogenic 
signal of phytopathogen [22-25]. Among the components 
of the synthetic minimal medium, specific carbohydrate 
sources are known to be important. Xoo propagates in rice 
xylem vessels, of which 60% are xylan (xylose) [26] and the 
xylose concentration in the synthetic minimal medium is 
critical to regulate the expression of hrp genes in the in vitro 
assay system [22]. The in vitro system lacks any rice-derived 
factors and could be the minimal condition that could acti-
vate the hrp gene expression.

In vitro assay system using host extracts
Recently, a new in vitro system for rice-Xoo interac-

tions was developed, which activates Xoo pathogenicity 
by adding Rice Leaf Extract (RLX) into Xoo culture [8]. 
The in vitro system showed the upregulation of effector 
gene expression and T3SS-dependent effector protein 
secretion after RLX treatment on Xoo [8,27,28]. The in 
vitro system was successfully combined with RNA-Seq 
to analyze the time-resolved genome-wide gene expres-
sions of Xoo upon the interactions with RLX. The new in 
vitro system could synchronize the pathogenicity activa-
tion signal in the RLX-treated Xoo cells, which enables 
to monitor the pathogenic signal of Xoo in a time-de-
pendent way and the signal to noise ratio of RNA-Seq 
data was high. Because it is possible to turn on the patho-
genic signal of Xoo at any specific time point, we could 
study the pathogenic signal pathways in the same genet-
ic background of wild-type Xoo without making single 
gene-knockout mutants for comparison. The RNA-Seq 
results provided the expression of many pathogenici-
ty-related genes of Xoo was initiated within 5 min upon 

the contact with RLX. The hrpG gene was transcribed at 
the maximum level within 10 min and hrpX gene expres-
sion reached the maximum level in 15 min.

Conclusion
Xanthomonas genus includes many pathogenic organ-

isms like Xoo, Xanthomonas oryzae pv. oryzicola, Xan-
thomonas albilineans, Xanthomonas axonopodis pv. phaseo-
li, Xanthomonas axonopodis pv. manihotis, Xanthomonas 
campestris pv. campestris, Xanthomonas campestris pv. ar-
moraciae, Xanthomonas campestris pv. musacearum, Xan-
thomonas campestris pv. vasculorum, Xanthomonas citri pv. 
citri, Xanthomonas euvesicatoria, and Xanthomonas fus-
cans subsp. aurantifolii, which infect diverse crops like rice, 
sugarcane, beens, cassava, crucifers, banana, citrus, tomato, 
and pepper [29]. Many pathogenicity-related genes in Xan-
thomonas are well conserved in other plant pathogens and 
even human pathogens [3].

We reviewed most commonly used and newly de-
veloped in vivo and in vitro assay systems to study the 
plant-phytopathogen interactions. The in vivo system 
uses intact plant and phytopathogen for assay and is 
useful to study the plant responses to the phytopatho-
gen infection. However, it is hard to study the patho-
genesis mechanism on the side of phytopathogen due to 
the heterogeneity of phytopathogen populations in the 
infection site. The in vitro system using minimal medi-
um is the simplest system to upregulate the expression of 
pathogenicity-related genes, such as hrp genes, in phy-
topathogens. The upregulating mechanism is still un-
clear and needs to be further studied. Newly developed 
in vitro system activates phytopathogen pathogenicity 
by using host leaf extracts instead of minimum medium 
and enables us to study the time-dependent pathogenic 
responses of phytopathogen upon the interaction with 
plant in the same genetic background. The assay systems 
will help us to understand the mechanism of pathogene-
sis in phytopathogens and resistance in plants and crops.
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