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Introduction
To convey the external environmental stimuli received by 

receptors to central house of cell: nucleus, there is a huge 
traffic of cytoplasmic components in which special proteins 
named receptor like protein kinases (RLKs) are ones. Years of 
research have witnessed the critical role of RLKs in maintaining 
the normal plant cell functions such as replication, protein 
synthesis, defense signaling, growth and development 
and stress survival by specific protein signaling [1]. In plant 
biology, on the basis of their functions and presence around 
(inside or outside) the cell membrane, RKs are considered as 
the third biggest family of receptors followed by other two 
main classes: transmembrane receptor kinase (TMRK) and 
receptor like protein (RLP) [2,3]. Anatomy of RLKs reveals 
that they contain variable ecto-domains such as single-pass 
transmembrane domain (responsible for ligand binding), 

intracellular juxtamembrane domain and cytoplasmic kinase 
domain [4,5].

Interestingly, it is found that most of the RLK superfamily 
members don’t have any extracellular domain but contain 
endoplasmic domains to regulate vital functions of cell and 
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plant cells and structures and help pathogen to penetrate 
the plant [18]. This pathogen exposure leads to activation of 
plant defense system in which plant immune system starts 
to eliminate the pathogens by disposing off their poisonous 
attacking chemicals [19]. In this defense response process, 
there are several components of plant immune system, which 
interact with each other and generate collective response at 
cellular level to organismic level. In cellular response, plant 
cell rich in several types of receptors, RLCKs contribute mainly 
and respond to any malfunction of cellular activities in a plant 
cell. These receptors are unique and super specific to convey 
the signal like pathogen attack to inside of cells to release 
counter response molecules for defense [20,21].

An increasing number of RKs and RLPs are found to be 
function as PRRs and monitor the immunological response 
patterns initiated by the entry of any foreign pathogen and 
release of defensive chemicals from the host [22-25]. These 
PRRs actions lead to trigger the immune system signaling that 
is characterized by transient calcium influx, radioactive oxide 
species (ROS) production and activation of mitogen activated 
protein kinases (MAPK), cyclin dependent kinases (CDKs) and 
transcriptional programming to stop the pathogen progression 
[26,27]. For example, receptor like protein 42 (RLP42) in 
Arabidopsis thaliana, senses the attack of fungal endo-
polygalacturonases (PGs) pathogens by its pg9 (At) conserved 
fragment of 9-amino-acids; and starts instituting a complex 
defense immunological response unit with other associated 
co-receptors such as suppressor of BIR1(SOBIR1) and somatic 
embryonic receptor-like kinase (SERK) [28]. Similarly, specific 
receptors in resistant tomato plant cells sense the entry of 
Cuscuta and Crip21 pathogens by their short peptide epitope 
of glycine rich protein (GRP) on cell wall [29]. Importance of 
those pattern recognition receptors (PRRs) mediated immune 
receptors of RLCK in sunflower plant was seen in gene HaOr7 
encoding a LRR receptor like kinases. It confers resistance 
against Orobanche Cumana which is a parasite plant living on 
roots of sunflower. It has been observed that in susceptible 
lines, the protein LRR is without transmembrane and kinase 
domains [30]. Considering importance and physiological 
functions of these cytoplasmic kinases, RLCKs are consider 
as flash point of research for better understanding about 
these pattern recognition immunological responses and 
the signaling pathways were carried out from different 
researchers.

In different transcriptomic analysis on Arabidopsis to 
observe the amplitude and timing of early immune responses, 
Wan observed that RLP23, a receptor of the NLP (Necrosis-
and ethylene-inducing-like protein peptides in Arabidopsis 
thaliana activation, suppressed the LRR receptor-like serine 
(FLSE2). It showed that genes regulated by RLP23 are only a 
fraction of those genes, which express differentially on the 
activation of FLS2 [31].

In another study, it was demonstrated that wall associated 
kinase 1 in Solanum lycopersicum (SlWak1) plays an important 
role in pattern recognition receptors-triggered immunity 
(PTI) through transcription factor interference [32]. Recently 
in transcriptomic analysis, it has been found that in RP-type 
immune receptors regulation, EDS1, a conserved lipase like 

categorized as distinct subfamily known as receptor like 
cytoplasmic kinases (RLCKs) [4,6]. In the light of recent studies 
on RKs, it has been established that plants possess hundreds 
of these membrane localized receptor kinases which are 
involved in mediating cellular responses and to develop 
response against external stimuli [7]. Going through chemistry 
of RKs proteins, it has been found that they are rich in serine/
threonine protein kinase that have short N and C terminals 
and several highly conserve subdomains in their peptidal 
chain [8]. Proteomics sequencing study reveals that about 
70% of cytoplasmic domains of RLKs and RLCKs are different; 
however, there is 30% similarity in the Leucine rich repeat 
(LRR), epidermal growth factor (EGF and universal stress 
protein domains (USP) [9-11]. Translated from ribosomes, 
RLCK are predicted to localize in the plasma membrane after 
refined by the process of post-translational modifications. 
In these modifications, N-terminal myristoylation is the key 
step in which addition of myristic acid on the N terminal 
motif take place [12]. Later on myristic acid facilitates the 
anchoring of domains to membrane [13,14]. RLCKs have 
advantages of their localization on membrane by developing 
better interactions with other membrane proteins and RLKs 
to function in signalling in response to any extracellular cues 
perceived by RLKs [15,16]. Literature mining reveals that 
Arabidopsis, rice, soybean and corn have 147, 379, 267 and 
175 RLCKs domains respectively [4,6].

In term of secondary literature, the aim of present review 
is to summarize the outcomes of recent research on the 
key role of RLCKs in regulating the diverse process in plants. 
Considering the essential functions of RLCKs in maintaining 
normal plant life continuity, this review highlights the 
unexplored directions in RLCKs functioning and will provide 
a source blooming growth of research to explore further in-
depth about RLCKs physiology, mechanisms of action and role 
in immunity, stress and resistance.

Method and Literature Mining Strategy
Relevant articles were selected against the specific 

keywords as per outlines of study by using the different 
search databases: PubMed, Google, Google Scholar and 
Research Gate. In addition to the relevancy of the title and 
abstracts, articles were selected for inclusion based on the 
year of publication, which was mainly between 2016 and 
2021. However, little older publications and data reports 
were also cited to strengthen the background of the subject. 
All selected articles are cited accordingly.

RKs and Plant Immune Response
Although plants lack specialized immune system, 

however they show strong immunological responses against 
any pathogen attack as like animal innate immune system 
and it relies on both cell surface and cytoplasmic immune 
receptor proteins [17]. Pathogens exposure to a plant life 
is deadly detrimental to its vegetation and reproduction. 
Different pathogens attack on plants and try to dominate 
the whole plant defense system by secreting different types 
of poisonous chemicals: alkaloids, steroids, hormones and 
enzymes. These secretory chemicals destroy and digest 
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supportive studies have established the facts about the 
essential contribution of these cytoplasmic kinases in 
pathogen associated molecular patterns-triggered immunity 
(PAMP-TI). These findings helped in developing the basic 
understand about function and ways of action and revealed 
the cascaded of signal transduction, activation of cellular 
kinase proteins traffic to generate immune response against 
the entry of any pathogen [39-43]. They proved that these 
cytoplasmic kinases, especially PBL13 kinase oppositely 
work in regulation of plant innate immunity under pathogen 
attack of bacteria and show association with RBOHD before 
the perception of pathogens indicating that PBL13 causes 
inhibition of inappropriate defense system activation when 
pathogen is absent. Figure 1, gives figurative description of 
RLKs role in plants immunity against pathogen attack.

RKs and Plant Growth/ Development
There are different receptor like cytoplasmic kinases that 

show their capability in embryo germination and help plant 
in cell division, differentiation and other chemical as well as 
physical mechanisms through their specialized activation/
monitoring systems [43]. This process start with the seed 
germination process where a little embryo breaks dormancy 
and stored food is also converted into useable energy source 

protein act as a signal transducer between intracellular 
NLR receptors activated by pathogen and transcription 
function and causes host cell death [33,34]. Mia found that 
CERK1, a lysine motif receptor-kinase plays important role 
in signaling chitin elicitor in Arabidopsis thaliana. CERK1 is 
a cell membrane binding protein having three Lysine motifs 
in extracellular domain and one serine/threonine kinase 
domain inside cell plasma with auto phosphorylation/myelin 
activity of protein kinase, which shows that CERK1 has a 
specific role in pathogen-associated molecular patterns 
(PAMP) association in plant cells [35,36]. ANXUR receptor-
like kinases are cell surface-resident pattern recognized 
receptors that help plant to respond during microbial attack 
with nucleotide binding domain having leucine rich repeat 
proteins. It was identified that ANXUR1, a malectin-like 
domain having receptor like kinase together with its ANX2 
negative homolog in Arabidopsis thaliana [37]. Other aspect 
of these immunological response explain that, to counter 
the pathogen mediated pathogenesis, plants have evolved 
intracellular immune receptors, which are nucleotide-binding 
leucine- rich repeat domain-containing receptors (NLRs), 
to detect cytoplasmic effector activity and trigger powerful 
immune responses [38].

In early days of research on RLCK, findings of numerous 

         

Figure 1: Gives figuration description of RLKs role in plants immunity against pathogen attack.



Citation: Javeed A (2022) Receptor Kinases: A Sophisticate Protein Network to Maintain Plant life Continuity. An Update. J Plant Biotechnol 
Res 3(1):68-77

Javeed. J Plant Biotechnol Res 2022, 3(1):68-77 Open Access |  Page 71 |

overexpressed then amount of biological active phytoene 
synthase is also increased which demonstrates the regulation 
of carotene biosynthesis [54]. During research on chloroplast 
biosynthesis regulation in maize, researchers found that 
ZmRH3 in maize and AtRH3 in Arabidopsis plays important 
role in binding with two mitochondrial RH proteins (PMH-1 
and PMH-2) which function in splicing of introns. Additionally, 
they also found that AtRH3 null mutation caused death of 
embryo and weak expression of this protein produced pale 
green plant by regulation of chloroplast biosynthesis 196 
[55,56].

RKs and Stress Conditions
During its life cycle, a plant faces more biotic as well as 

abiotic stress from its environment than any other organism 
because it cannot move or act physically in response to any 
stress [57]. A plant at ground faces high and cold temperature, 
drought, water logging, ultraviolet radiations, salinity & 
alkalinity, chemical hypoxia and lowering and some physical 
damages from animals, birds and insect pathogens [58]. As 
like response to pathogen attack, plants also response to 
any stress either in the form of producing different chemical 
products or proteins that work to save the plant from 
damage [59-61]. It has been evaluated that these secreted 
enzymes working for the plant during stress condition are 
known as universal stress proteins. Their structures shared 
similarity with UspA, UspC, UspD, UspF, UspG but belong to 
different subfamilies [62,63] and help the plants to survive 
in extremely unfavourable conditions. Findings of different 
studies demonstrate that during unbalanced nutrient 
availability, high or low pH, heavy metals stress or some other 
harsh conditions, plants enhance the production of UspA 
that is serine/threonine coded protein, which controls the 
phosphorylation process [62,64].

To cope with drought conditions in G. hirsutum, a gene 
NCED (9-cis-epoxycarotenoid- deoxygenase) regulated the 
production of abscisic acid (ABA) which in turn regulate the 
physiological function in the prevailed condition manage the 
drought condition [65]. As like, NCED, DELLA protein kinase 
is responsible for signaling and controlled production of 
gibberellic acid under stress conditions and regulate other 
physiological functions [66,67]. In published literature, studies 
reported that during stress conditions, there are different 
receptor kinases which sense signal from environment and 
sends directions for the production o enzyme proteins which 
can help plant to survive, however the number and types 
of genes which code for these kinase proteins and their 
way of response to environment varies from plant to plant 
[68-71]. Rice plant shows special mechanism to absorb the 
stress condition by the expression of different OsRLCKs, 
which help plant during stress, immunity and reproduction. 
Most of these receptor-like cytoplasmic kinases work for 
plant survival especially during growth and developmental 
stages and in response to abiotic stress QTLs [72-74] It was 
reported that in transgenic Arabidopsis plants OsSAP11 and 
OsRLCK253 (obtained from rice) help the plant in drought 
and salt stress through signaling pathway by effecting many 
endogenous genes [75]. Ambavaram, et al. in 2014 found that 

for its growth activities. It has been found that a mutation of 
CRINKLY4 gene, which codes for putative receptor kinase in 
signaling during cell differentiation, could cause abnormality 
in leaf epidermis such as cell shape and size in developing 
endosperm. It reveals the role cr4 gene involvement in 
controlling the growth of plants [44]. In another study, 
it was evaluated that a receptor kinase CLAVATA (CLV1) 
in Arabidopsis thaliana contains an extracellular domain 
consisting of 21 leucine rich repeats, one cytoplasmic kinase 
domain and a transmembrane domain which regulate the 
identity and behavior of stem cells during plant vegetative 
shoot growth in shoot meristem, florescence meristem and 
inflorescence meristem [45]. Meristems have a common 
domain in central zone and peripheral zone that help them 
in organization center signaling in cell differentiation  and  
characterization in new organ formation.  The homeodomain 
expression factor WUSCHEL (WUS) in organization center is 
necessary for regulation of stem cells of central zone whose 
mutation leads to expansion of central zone of meristem 
causing a band-like stem, flowers and floral organs such as 
club-shaped siliques [46]. CLV gene plays central role in 
signal transduction by CLV1 receptor kinase. CLV1 receptor 
kinases activated by small ligand binding molecules CLV3, 
which is secreted by central zone stem cells. Findings reveal 
that mutation in anyone of these mentioned genes can cause 
defects in development of stem cells and hence, control the 
growth of plant [47]. CLV3 is the member of endosperm 
surrounding region (CLE) gene family, which codes for small 
amino acid peptides having a conserved C-terminal sequence 
and CLE motif containing specific receptors for signaling. 
Molecular analysis reveals that overexpression of CLE 
peptides leads to retardation of root growth and premature 
root meristem differentiation that indicates a pathway related 
to CLV [47,48]. Similarly, it has been reported that a gene 
family member of cellulose synthase CESA1/RSW1 regulates 
the growth of root and shoot cell walls and determines cell 
shape during cell division and expansion in embryo cells of 
Arabidopsis [49]. During research on RLCKs function in rice 
callus, Sun, et al. in 2015 found that a temperature sensitive 
290-kDa complex OsSec18 in rice embryo cells facilitating 
a conserved ATPase protein, plays important role in plant 
height and 1000-grain seed weight. They also found that 
Os60sP0 is the component of OsSec18 that plays role in 
vacuolar morphology by production of fusion proteins in rice 
endosperm [50]. While working on non-cell-autonomous 
proteins (NCAPs) role in cell-to-cell movement of CmPP16-
1 in pumpkin (Cucurbita maxima), researcher reported that 
pumpkin phloem sap movement is facilitated by NCAPP1 role 
in posttranscriptional modification of phloem sap proteins 
[51]. Furthermore, they found that a glutathione S-transferase 
(GST)-CmPP16-1 fusion protein system consisted of 36 amino 
acid peptide is required for cell-to-cell movement capability 
of glycosylation precognitive motif for phosphorylation in 
consistence with GST proteins in plasmodesmata transport 
[51,52]. During carotene biosynthesis in Arabidopsis thaliana, 
there are some rate-limiting enzyme known as phytoene 
synthase that regulates carotene biosynthesis by its role in 
posttranscriptional modification of OR (ORANGE) protein 
that regulates chromoplast differentiation [53]. If At-OR is 
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in regulation of pollen development and any mutation of 
genes results in the formation of defective proteins and 
signaling molecules along with some environmental factors 
leading to male infertility [83,85]. During pollen production 
there are many genes, which code specific proteins and 
enzyme kinases responsible for health and viability of pollens 
during pollination until fertilization [37,85]. Some genes only 
express during specific times of plant development such as in 
maize ZmSTK gene family coding for serine/threonine enzyme 
kinase express only during pollen formation and its mutation 
causes severe protein disruption in pollen development [86]. 
Gene ontology (GO) functions and molecular analysis show 
that ZmSTK1 & ZmSTK2 mutant paralogs are expressed in 
pollen development and germination and cause damage 
during pollen transmission. Zmstk1 single mutant causes less 
damage as compared to double mutant and zmstk2 even has 
less effect on pollen damage but when both zmstk1 & zmstk2 
combine, zmstk2 acts as enhancer of zmstk1 expression 
and damage is so severe that double mutant pollens cannot 
survive for fertilization and likely, no seeds are formed in 
offspring [86-89].

Wang, et al. in 2017 while working on maize pollen 
development reported that ZmSTK2-USP promoter gene is 
expressed only in mature pollens but not in any other floral or 
vegetative tissue. ZmPti1a in maize expresses only in pollen 
development and present only on plasma membrane of pollen 
that plays an important role in signaling pathway [90,91]. In 
Arabidopsis thaliana there are more than 23 different receptor 
like kinases that express during development of pollens and 
growth of pollen tube [79]. Receptor like cytoplasmic kinases 
LIP1 and LIP2 working for the pollen tube guidance into the 
micropyle during pollination and in case of any mutation 

a receptor like cytoplasmic kinase known as GUDK (growth 
under drought kinase) by signaling through phosphorylation 
and activation controls the expression of OsAP37 under 
drought stress [76].

In rice, a receptor-like cytoplasmic kinase XCRK increases 
the antioxidant capacity and Xanthomonas oryzae pv 
.oryzicola (Xoc) tolerance by production of ABA [77]. Figure 2 
demonstrates the mechanism of RKs proteins to regulate the 
different stress conditions and support normal life continuity 
in plants.

RKs and Plant Reproduction
For the continuity of life, in mechanism of sexual 

reproduction in plants, gametes fusion of male and female 
parts of same (monoecious) or separate (dioecious) plants 
take place by the different membrane receptor-like kinases 
and mediate the process of fertilization to zygote and embryo 
formation [78]. There is increased size of evidence about the 
role of receptor kinases in the reproduction of plants. Any 
kind of abnormity in these specific kinase proteins may halt  
the  process  of  gametes  formation,  fertilization  and  hence,  
determine  there production of plants. Recent findings 
revealed that a pollen receptor-like kinase1 PRK1 having 
conserved amino acids similarity with 69-kD protein found only 
on pollen microsomal membrane is compulsory for normal 
development of pollen and growth of pollen tube [79,80]. 
Researchers further elaborated that development of pollen is 
a highly coordinated and complicated biological process that 
involves different receptor like kinases, has special function 
in signal transduction in an organized way during pollen 
development and pollen tube growth in Petunia inflate [81-
82]. A number of proteins and signaling molecules are involved 

         

Figure 2: Demonstrates the mechanism of RKs proteins to regulate the different stress conditions and support normal life continuity in 
plants. RLKs: Receptor likes cytoplasmic kinase; ROS: Radioactive oxidative species; ABA: Abscisic acid.
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special link with Ca+2 concentration as pollen tube growth is 
directly related to calcium availability and in case of calcium 
deficiency the pollen tube growth and fertilization in ovules 
is also decreased about 37% as compared to wild type [106].

In following years, in Arabidopsis plant, it was explored 
that two receptor like kinases BUPS1 and BUPS2 along with 
their peptide ligands RAFL4 and RAFL19 interacting with each 
other are shown to play a special role in cell-to-cell signaling 
during fertilization. They are expressed during pollen tube 
growth and responsible for pollen tube integrity until safe 
fertilization. BUPS1 & BUPS2 make interaction with ANXUR1 
and ANXUR2 through extracellular domain and bind with 
RALF4 and RALF19 [107].

Conclusion and Future Prospective
RKs are key regulators to plants adaptation to environment, 

reproduction, growth and defense. Going through literature 
of years of research on RKs, it has been well understood that, 
these proteins are especially designed to receive their ligand 
and plays cameral role in regulating the signaling mechanisms 
of defense strategy, sexual reproduction, and growth and 
stress conditions. A growing literature also demonstrates that 
RKs share similar structural organization with each other to 
make adopting complexes like SERKs and SOBIR and expand 
the RKs pathways involvement by using the RLCKs as signal 
transducers to adopt common signaling nodes that link 
them to downstream signaling cascade of cellular response 
level. Current understandings on the RKs role in plant innate 
immunity studies indicate that RLCKs regulate the defense 
mechanism through the variety of signaling nodes including 
G protein and orchestrate a variety of immune responses 
according to type of pathogen attack. In conclusion, we 
stated that, nature granted the land plants an evolutionarily 
evolved special cellular protein network in the form of RKs 
to regulate signal peptides to coordinate the growth, sexual 
reproduction and develop downstream signaling nodes to 
orchestrate a complex array of defense against microbial 
pathogens or to face any drought condition. However, still 
great deal is remaining to connect the inadequate knowledge 
concerning how this sophisticated machinery receives 
stimuli from external world and performs operation of RLCK-
dependent signaling. Advanced level studies are needed to 
explore the risk factor of RKs redundancy in crucial cellular 
signaling pathways and to develop better understanding 
about the substrates of these proteins especially RLCKs. To 
enable the plant to cope the rising pathogen burdens, we 
are in urgent need to identify new PRRs by ever-expanding 
genome information from both plant and microbes; we 
need to unravel the immune receptors repertoire, their 
corresponding PAMP and clear understanding about the 
host-pathogen evolution. Furthermore, combining the 
biochemistry and protein- genomic analysis of mutants in 
RKs, pathways will be needed to evaluate the impact and 
difference of expression in those phenotypes.

Future investigations must focus on the expression of RKs 
in specially treated conditions to elucidate the RKs ligands 
and substrates as well to explore the activation of different 
signaling nodes and the way of regulating downstream 

the pollen tube cannot be guided into the micropyle and 
lead to retardation of fertilization [92]. While working on 
pollen tube guidance into the female gametophyte, there 
are findings which reveal that there are certain RLCKs which 
are involved in pollen tube development and guidance [93]. 
In coordination with paralogs of female factors, FERONIA/
SIRENE, inhibits the rupture of pollen tube before reaching 
its destination of fertilization in synergid cell. Any mutation in 
these genes lead to pollen’s failure to survive and halted the 
most important process of fertilization due to lack of signaling 
proteins required for reception [94,95]. Homologs AtIPK2α & 
AtIPK2β proteins are required in process of embryogenesis. In 
Arabidopsis thaliana, there are two closely related homologs 
AtIPK2α & AtIPK2β, which were observed to take part in 
auxiliary shoot branching, root growth and during abiotic 
stress response. But recently in 2015 Zhan, et al. found that 
they also play role in development of pollens, pollen tube 
guidance and in process of embryogenesis [96,97].

Glycosylphosphatidylinositol (GPI) has equal importance 
in both kingdom Animalia and plantae. It is well evaluated that 
in tomato plant, GPI serves as a transmembrane anchoring 
domain for protein binding that is produced in endoplasmic 
reticulum by additional monosaccharide, fatty acids and some 
phospho-ethanolamine attachment. In case of any deficiency 
of GPI production, same as in animals and microbes, the 
embryogenesis and cell division is blocked leading to embryo 
lethality and blocked cell growth in plants [98]. In Arabidopsis 
thaliana, SETH1 and SETH2 sister genes encode for two 
conserved proteins are involved in several vital functions like 
GPI biosynthesis, cell wall synthesis, shaping, intracellular 
signaling and pollen tube growth. In gremlins, genetic testing 
reveals that mutant seth1 and seth2 lead to inhibition of 
pollen function and pollen transmission resulting in reduction 
of pollen tube growth, pollen germination and cellulose 
deposition along with other irregularities in metabolism 
[99,100].

LBD (Lateral organ boundaries domains) are some 
proteins responsible for regulation of biological processes of 
development of lateral organs in plant and morphogenesis, 
immune response, regeneration and development of 
pollen [101,102]. While working on rice heading date, it has 
been reported that in rice, OsLBD37 & OsLBD38 are two 
homologous proteins, convoluted in regulation of pollen 
heading date [103]. The overexpression of these two proteins 
localized in nucleus differently lead to delay in heading date 
and increase in yield by suppression of expression of Hd3a 
and RFT1 florigen genes, which regulate the heading date 
Ehd1 [104]. Li, et al. in 2017 while working on Arabidopsis 
anther cell reported that a somatic embryogenesis receptor-
like kinase1 SERK1 and SERK2 and leucine rich repeats 
receptor like kinases play role in cell differentiation during 
anther development in floral regions [105].

As most suitable model in plant sciences, In 2017, while 
working on growth of pollen tube and root tip growth in 
Arabidopsis, Schoenaers and his co-workers found that 
ERULUS (ERU) gene is expressed only in pollen tube and 
root hairs, codes for a receptor like kinase that played 
special role in pollen tube growth. Furthermore, it also has a 
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