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Abstract
Background: A number of reports have pointed to the apparent relationship between reduced IGF1 in pregnancies and 
the development of autism in the offspring. Fever due to inflammatory processes in the gravida emerges as a potential 
key factor in this phenomenon.

Methods of inquiry: Investigations have reported an increase in neonatal autism related to an enhanced production of 
interleukins in some gravidas before delivery. The medical records of the mothers of autistic children were examined 
retrospectively for pertinent factors. Women who had endured infection- related fevers during their pregnancies were 
more likely to have delivered children with neurologic deficiencies such as autism and schizophrenia.

Conclusions: Inflammatory occurrences such as with women infected by Covid-19 during pregnancy produce enhanced 
levels of cytokines, especially interleukin-6, which can disrupt IGF1-mediated neurogenesis and CNS circuitry formation 
in the neonate.
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(dysconnectivity) in the child, especially in the psycho-
behavioral pathways [11-14].

In viral-promoted maternal infections, the fetus while still 
in utero appears to be somewhat shielded. Although recent 
studies have not identified any major immediate detrimental 
effects on the fetus whose mother is battling severe Covid-19, 
the rise of interleukin IL-6 in a “cytokine storm” governs the 
extent of corporal temperature elevation, which reduces the 
level of IGF1 in the neonate. Consequently, cerebroneural 
dysconnectivity may persist, thereby enhancing the chances 
of autism developing in the child [11,12].

However, inflammation in pregnant mothers such as from 
coronaviruses has been linked to mental disorders in their 
offspring [13]. Postpartum neonatal complications such as 
autism, ADHD, depression, cerebral palsy, schizophrenia, poor 
cognition, or mental retardation may still be consequences of 
antepartum maternal inflammation. Interleukens such as IL6 
may conceivably cross-over to the fetus, especially during the 

Introduction
Retrospective studies have evaluated the recorded data 

of autistic youngsters in Denmark, Norway, and the United 
States born to women who had experienced febrile prenatal 
episodes, especially in the second trimester, compared 
to those with totally afebrile antepartum courses. Autism 
frequency increased about 1.4-fold in the offspring of gravidas 
who had been affected with antepartum fever related to 
various viral ailments. The highest rate of neonatal autism 
occurred when the mother experienced three febrile episodes 
during the same pregnancy. In one such retrospective study 
in the United States, the increased risk of autism was reduced 
when the mothers were treated with antipyretics. However, 
the possibility of brain toxicity side-effects may be associated 
with over-use of acetaminophen, as observed in test animals; 
ibuprofen is not recommended during pregnancy, especially 
in the third trimester [1-10].

Insulin-like growth factor-1 (IGF1) has numerous roles 
in the body’s chemistry and homeostasis. Among these 
functions is the development of the components of the central 
and peripheral nervous systems, including brain growth, 
oligodendrocytes, and axonal myelin sheaths. Sufficient IGF1 
in the neonate is essential for the proper introduction and 
integration of newly formed nerves, especially during the 
first postpartum year. This contributes to the development 
and persistence of functional brain neuronal patterns, 
and the avoidance of supratentorial neurologic defects 
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Under stable biochemical conditions, the level of IGF-
1 often changes in the opposite direction from that of IL-6. 
For example, it has been reported that for babies born on or 
about the mean gestational age of 27.8 weeks, the average 
total serum level of IGF1 is 46.6 ng/ml, whereas if the child is 
born at term without experiencing nutritional complications, 
the mean serum level is 88.7 ng/ml. In contradistinction, the 
concentration of serum IL6 between these two gestational 
durations falls from 9.5 to 2.3 pg/ml (p < 0.001) [20]. The 
physiologic states under which IL-6 or IGF-1 change dominates 
are central in defining the basis of various biomedical 
phenomena. For example, interleukin-6 increases in children 
with pathological inflammatory phenomena, cystic fibrosis, 
growth restriction bowel diseases, premature delivery due to 
maternal infection, and juvenile idiopathic arthritis. Similarly, 
chronic inflammatory states can be associated with IGF-1 
insufficiency, IGF-1 resistance, or down-regulation of IGF 
receptors [21-27].

In recent years, infusion with rhIGF1 has been used to 
sustain and strengthen markedly premature babies born 
between 23 and 28 weeks of gestation. rhIGFBP-3 (IGF1 
binding protein-3) is added to enhance and lengthen the 
duration of IGF1 support. This decreased the occurrence of 
severe bronchopulmonary dysplasia in the infants treated in 
this manner [28,29].

On the one hand, IGF-1 enhancement is observed in 
mammals which resist febrile seizures [21]. Alternatively, 
growth-retarded neonates often present with higher 
concentrations of IL-6 in their placentas [15]. Local brain 
inflammation upsets the normal secretion of growth 
hormone from the baby’s pituitary gland, resulting in IGF-1 
insufficiency. Coronaviruses have been reported to invade 
neurons, causing demyelination [30,31]. Viral dissemination 
is possibly due to pathological changes in neurons which 
disturb brain circuits in particular [32].

It has been hypothesized that maternal immune 
activation (MIA), fever, and cytokine storm during pregnancy, 
associated with increased levels of IL-6, may be the etiologic 
disorder promoting neonatal neurologic ailments [12,33-36]. 
The exact role of IL-6, if exclusive, remains to be elucidated in 
the laboratory, but its relationship to IGF1 decrease may be 
the key to this febrile phenomenon.

The possible relevance of severe ARDS was again examined 
in June of this year. Five reports of IL6 elevation in Covid-19 
cases in 2020 were compared with three prior reports (2014-
2018) in other hyper inflammatory diseases. In the latter 
cases, the mean IL6 levels were 9 times or more higher than 
in the former cases. The analytical procedures were different 
in the former and latter sets [37].

However, this could intimate that inflammatory cytokines/
interleukin in addition to IL6, such as IL-17A, are operative in 
Covid-19. For example, the occurrence of cytokine storm in 
compromised individuals infected with Covid-19 is enhanced 
by chronic low-grade inflammation due to the combined 
effects of IL- 1β L-6, IL-17A, and TNF-α (tumor necrosis factor) 
[35,38]. In autistic children, the more severe the autism, the 
higher are their serum IL-17A levels [39,40].

middle months of the gestation. Excessive proinflammatory 
maternal cytokines reaching the fetal brain could be toxic to 
fetal neurons and oligodendrocytes in such instances [14].

There appears to be an inverse relationship between the 
level of maternal IL-6 during a pregnancy and the newborn’s 
functional brain connectivity. Also, the formation of neonatal 
synapses may be altered by elevated IL-6 in the mother and 
the consequential reduction of IGF1 in the fetus during the 
gestation. The diminution of IGF1 is central to subnormal 
myelination in the infant at basic stages of neural pathway 
development but may no longer be apparent in the older 
autistic patient [15]. Thus, a correlation exists between the 
degree of disturbance of the neonate’s brain networks and 
the level of IL-6 concentrations in the gravida. Similarly, an 
inverse association has been observed between front limbic 
cognitive development in the first 12 months of life of the 
neonate (or later) and the maternal IL-6 concentration during 
the antecedent pregnancy. These are like the cognitive 
deficits commonly seen more clearly in autism. Persistence of 
neuroinflammation with IL-6 in the brains of mature autistic 
patients has been reported [12-14].

In related neurologic studies, behavior deviations found 
in children 2 years of age paralleled changes in maternal 
interleukin-6 levels during the prior gestation. In such cases, 
alterations in the mother’s amygdala, in particular, preceded 
increased emotional and stress reactivity in their offspring 
[16-20].

Cytokine storm in the gravida, with fever and serious 
dyspnea, may follow a mild initial disease course. A surge 
in immune molecules, such as IL-6, and small blood clot 
production may result in fatal damage to the patient’s lungs 
from acute respiratory distress syndrome (ARDS) [11,21]. This 
may well be the result of enhanced maternal hypoxemia and 
circulatory insufficiency.

Pathophysiology of IL-6 vs. IGF-1
Increased levels of maternal interleukins (especially IL-

6) have been measured in some samples of fetal blood and 
amniotic fluid [5,6]. Elevated IL-6 was detected postmortem 
in autistic brain tissue from affected individuals with an 
imbalance of neural circuitry. Maternal inflammation during 
the pregnancy, as measured by temperature and the IL-6 
level, appears to be associated with the newborn baby’s 
reduced brain connectivity [11,12]. Overall, maternal fever 
for any infectious reason during gestation, especially within 
the middle months of the pregnancy, may enhance the 
potential for neonatal autism.

Typically, with an increase in IL-6, the level of IGF-1 falls. 
Especially in the newborn, IGF1 is the primary stimulant for 
myelination of new axonal fibers in the Central Nervous 
System. Patterson examined in detail the effect of glial and 
maternal-derived cytokine production in pregnancies. In 
particular, interleukin-6 activated the placental JAK-STAT3 
intermediate. As a result, the concentration of IGF-1 in the 
cerebrospinal fluid of neurologically normal youngsters was 
found to be higher than in autistic children of the same age 
[15-19].
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Brain dysconnectivity apparently due to defective 
myelination is a key finding in autism [41]. In test mice, 
decreased myelin-basic protein and other myelin-
related components have been found following influenza 
implantation [42]. This is especially worrisome in human 
babies experiencing long-term neurologic sequelae, as 
happened in Spanish flu.

Prophylaxis
It is concluded that positive action should be taken with 

all corona-exposed babies to compensate for any IGF1 
deficiency, as measured in the umbilical cord blood at birth. 
Prior investigations have reported that infants who were 
nourished by breastfeeding exclusively for at least a full year 
had a lower incidence of autism subsequently. Human milk 
contains a higher level of IGF1 than milk from other sources. 
In addition, IGF1 survives gastric digestion in the baby, 
apparently due to the casein coating of the polypeptide [43-
45].

A study is now being initiated in cases of gravidas who 
survived severe Covid-19 during their pregnancies which 
examines the data related to the extent of breastfeeding the 
neonate and the degree of formation of autistic characteristics 
(if any) of the child at ages 1-2-years. This will be compared 
to mothers who were unaware of any febrile episodes during 
their pregnancies.

Hence, IGF-1 mediated myelination of developing CNS 
nerves in the neonate is central to understanding the effect of 
fever-promoted interleukins on patients affected by Covid-19. 
Such insight will be helpful if additional coronavirus-like 
pandemics occur in the future. Without being prepared for 
dealing with this, neuropediatric Ans will be challenged and 
short-staffed. In essentially all cases, febrile gravidas with flu-
like symptoms should be treated with antipyretics actively. 
Finally, the wide distribution of corona immunization, once 
successfully developed, would apparently result in a drop in 
autism rates in the offspring of pretreated women.
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