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Abstract
Multiple sclerosis and autism bear significant neuropathologic similarities such as reduced myelination and elevated 
anti-myelin basic protein (anti-MBP). However, the ages at which multiple sclerosis and autism are first diagnostically 
apparent are typically quite different. Therefore, we are proposing a single therapeutic model that may be beneficial for both 
conditions using glatiramer to modulate the antibody to MBP, and insulin-like growth factor to stimulate the myelination 
of neurons. This new approach needs to be evaluated in future clinical studies.

Background and Relevant Associations
When comparing autism spectrum disorder (ASD) 

and multiple sclerosis (MS), similarities and differences 
can be noted [1,2]. Both are maladies of myelination. Both 
display elevated titers of myelin basic protein antibodies. 
However, the pathology of autism begins in infancy and 
mainly involves reduced neo-neurogenesis of the central 
nervous system (CNS). In contradistinction, the neuro-
muscular manifestations of MS most often first appear in 
adulthood.

Studies of brain biopsies from cases of ASD have 
identified symmetrically reduced myelination of newly 
formed neurons, whereas myelin sheaths in unaffected 
individuals are uniformly thicker [3]. The neurolog-
ic symptoms of the disease are thought to be related to 
altered synaptic function in the young central nervous 
system. Loss of Purkinje cell cerebellar tracts has been 
detected in autistic children by MRI tractography [4]. In 
contradistinction, demyelination of established neurons 
in MS is patchy and irregular. This presentation is appar-
ently a consequence of specific local autoimmune degra-
dation of established myelin components; mature nerves 
exhibit diminished velocity of impulse transmission and, 
subsequently, muscle degeneration occurs [5].

Because of the age of onset, brain dysconnectivity 
could account for the behavioral problems encountered 
with childhood ASD but not with MS, which typically 
appears first in adults [6]. Besides ASD, dysconnectivity 
has been implicated in other neuropathies such as 
Freidreich's ataxia and schizophrenia [7,8]. In the latter, 

miswiring is related to aberrant synaptic plasticity due to 
abnormal receptor function. Significant dysconnectivity 
is identified in treatment-resistant schizophrenics when 
compared with their healthy siblings [9].

The 70-amino acid polypeptide, insulin-like growth 
factor-I (IGF), is thought to be a key parameter in the 
genesis of ASD because of:

A.	 Reduced IGF in the cerebrospinal fluid (CSF) of 
young autistic children [10];

B.	 IGF activation of myelination via oligodendrocytes 
[11];

C.	 Laboratory mice altered to exhibit autism-like 
behavior improve when given IGF [12];

D.	 Milk, especially from human sources, contains 
significant levels of IGF. Groups of babies breast-fed 
(in contradistinction to formula) for extended periods 
later display a lower overall incidence of autism than 
the general population [13];

E.	 Very-small-for-gestational-age (VSGA), very premature 
newborn commonly have lower levels of IGF in their 
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blood than normal-sized babies. Such small children 
also exhibit a higher incidence of ASD later [14,15];

F.	 In addition to IGF, two other bioactive factors are of-
ten elevated in autistic individuals: one is serotonin 
and the second is anti-myelin basic protein IgG (an-
ti-MBP). The latter may be acting to retard produc-
tion of functional new neurons through myelin de-
ficiency. It has been proposed [16,17] that the serum 
concentrations of these three factors can be com-
bined at birth to determine the Autism Index (AI) to 
predict the likelihood of later development of autism. 
(Future studies may show that the magnitude of AI 
defines the position of a given case on the Austism 
Spectrum):

AI = [p1n1+p2n2+p3n3]/0.1

Where, p = weighted probability; n = percent depar-
ture from normal; 1 = IGF; 2 = anti-MBP; 3 = serotonin 
concentration.

Hypothesis
Enhancing pharmacologic efficacy in autism

Giving IGF to autistic patients to alleviate symptoms 
has been proposed [18]. However, myelin defects already 
established in older affected individuals (especially 
brain dysconnectivity) may be beyond functional repair 
[19,20], with the possible exception of mesenchymal stem 
cell therapy [21]. IGF in vivo has numerous additional 
control functions such as modulating skeletal growth 
rate, longevity, and tumor enlargement [22], which 
may be problematic. Thus, it could be advantageous to 
chemically isolate the portion of the IGF macromolecule 
able to promote a specific neurologic benefit exclusively 
or predominately.

One might consider a newborn's random motions as 
a trial-and-error experiment in identifying the most ben-
eficial neuromuscular mechanisms for use in life. Once a 
utilitarian neuronal pathway is defined, it is made perma-
nent. This "cementing" is promoted by myelination. A large 
portion of these neural roadmaps are established within the 
first year of life. Based on behavioral changes, ASD becomes 
evident and is typically diagnosed between the ages of 1 and 
4 years [23,24]. In that the irreversible neurologic damage 
characteristic of autism is largely sustained in the first 1-2 
years of postpartum life, early diagnosis and preventive 
therapy must begin before symptoms arise.

Serum IGF reaches a peak concentration at the 
time of the teenage growth spurt and decreases steadily 
thereafter [25]. Little or no symptom resolution in 
autistic individuals typically occurs by that time because 
of the infantile onset of central dysconnectivity. If one 
of the prime factors in this process (IGF) is deficient 

since birth, unsupported efforts by the body to correct 
psychosocial defects beyond the first year of life are 
futile. Therefore, timely augmentation of IGF supply and 
the promotion of myelin generation in the neonate are 
both essential.

Concerning the putative association of immunologic 
factors and autism, maternally derived anti-brain 
autoantibodies have been found in as many as 20% of 
mothers with children at risk for ASD [26,27]. Autism 
has been identified in the offspring of mothers with MS. 
This suggests the possibility of fetal exposure to immune 
assault in utero.

To corroborate this proposed pharmacologic 
bimodality approach to ASD, an appropriate initial 
clinical study would be to measure the serum IGF level 
at birth and to psychologically test each untreated child a 
one year or two later for signs and symptoms of autism. 
This would establish peripartum cord blood test limits 
to differentiate normal from deficient and clarify if such 
a distinction exists. A second phase of such a study 
would be a double-blind investigation where 50% of the 
neonates would be given IGF augmentation and the rest 
placebos. After the first year of life, children who had 
received the IGF supplement would be compared to 
those who did not, for the incidence of autism as it may 
relate to the neonatal IGF level. (Increlex® is a synthetic 
analogue of IGF that has been approved for human use 
by the FDA.) As an immunomodulator of anti-MBP, 
glatiramer added in this setting should augment myelin 
biosynthesis.

Enhancing pharmacologic efficacy in multiple 
sclerosis

A drug which is widely utilized to lengthen the time 
between relapses in MS is glatiramer acetate (Copaxone®), 
a random amino acid polymer similar in composition 
to MBP [28]. It is believed that glatiramer produces its 
benefit by complexing with the anti-MBP antibodies and 
reducing T-cell attack, thereby raising the level of the 
free MBP available for the regeneration and organization 
of functional myelin. The primary benefit of this drug in 
relapsing MS, for example, is to extend the time between 
attacks; in the long term, the disease typically eludes 
improvement under this regimen, however.

The observation that the symptoms of MS exacerbate 
with a patient's age, and that the serum IGF level in 
all humans normally falls with age, further supports 
the contention that demyelination in this disease is 
related to the total quantity of free IGF available [24-
29]. The variation in the rate of decrease of IGF activity 
is believed due in part to polymorphism of the IGF 
gene on chromosome 12, mRNA heterogeneity, and 
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concentrations of the growth factor's six binding proteins 
[29-33]. Hypomyelination caused by growth hormone 
deficiency can be reversed by IGF-1 in transgenic mice 
[34]. Thus, the potential for spontaneous remyelination 
of denuded axons in MS patient’s decreases with age [5], 
unless additional IGF can be supplied parenterally.

IGF alone given to MS patients has proven ineffective 
[35]. This may be due to the concurrent up-regulation of 
one or more of its six binding proteins (IGFBPs), thereby 
limiting the level of free IGF. Some species of truncated 
IGF have weakened adherence to IGFBPs and, as a result, 
increased activity [36,37]. Of particular value would be 
an IGF analogue which seeks growth factor receptors but 
interacts only weakly with IGFBPs.

In current MS therapy, glatiramer by itself would ap-
pear to diminish the immunologic degradation of myelin 
basic protein, a fundamental building block of myelin 
[28]. To promote the reparative function of glatiramer 
could be the incorporation of the oligodendrocyte stim-
ulator, insulin-like growth factor-1. Glatiramer advances 
oligodendrogenesis in vitro by Th2 lymphocyte stimula-
tion of IGF biosynthesis, but apparently not enough to 
overcome the effects of demyelination in test animals or 
affected humans [38-40]. It would seem more appropri-
ate to treat multiple sclerosis cases with both parenterally 
administered glatiramer and IGF (or one of its truncated 
forms) together. In this way, the availability of free MBP 
and activated oligodendrocytes would be enhanced to 
achieve more neurologic rescue.

Another 2-agent approach for treating demyelination 
diseases has been studied. Using mesenchymal stem 
cells for neuro-restoration synergistically with a protein 
kinase inhibitor, such as Fasudil®, the combination had 
a benefit superior to either modality alone [41]. Multi-
functional pharmaceutical combinations (e.g., Atripla®) 
have been especially efficacious in arresting very high 
HIV RNA concentrations [42].

Discussion and Propositions
From the discussions reviewed above and from 

definitive or suggestive prior research already reported, 
it would appear that ASD and MS have characteristics in 
common:

1.	 Defective myelination of new (in the fetus and/or 
neonate) or established (in the adult) neurons;

2.	 Autoantibodies that prevent the initial generation or 
participate in the subsequent damage of functional 
myelin sheaths;

3.	 Diminished ability to create new or repaired myelin 
through the constructive effects of IGF or similar 
agents; and

4.	 Both conditions have been attributed to genetic 
polymorphisms, although a comparison of the two 
diseases in this aspect remains to be investigated. 
Polymorphism found in the IGF gene is related in 
some cases to suppressed levels of the growth factor. 
Gene studies have validated associations between 
multiple sclerosis and polymorphic nuclear variants 
[43,44].

The present hypothesis would appear to resolve some 
shortcomings of previous therapeutic attempts. MBP 
is needed for constructing and assembling myelin. The 
presence of anti-MBP in ASD and in MS may well be 
a consequence of a viral infection in either the mother 
before parturition or in the postpartum infant since IL6 
can act as an immunologic stimulus [1,45-48].

It is therefore proposed that the combination of glati-
ramer to reduce anti-MBP activity and IGF to promote 
neo myelination would enhance the pharmacologic ben-
efit in treating both diseases for similar reasons:

1.	 Neutralizing the anti-MBP in either malady would 
enhance the effective concentration of this essential 
protein component in subsequent myelin synthesis.

2.	 The inclusion of IGF in treating both diseases would 
stimulate oligodendrocytes to promote the biosynthesis 
of myelin for neogeneration or repair. Early initiation 
of the combination of the drugs would appear to more 
effectively retard the development of neuropathologic 
symptoms than either pharmaceutical alone.

3.	 If serum IGF levels at birth do indeed predict the 
subsequent development of autistic symptoms, then 
treatment with a selective synthetic analogue of IGF 
and glatiramer may well alleviate at least the most 
serious aspects of the disease.

Clinical studies to corroborate this hypothesis in the 
case of both MS and ASD should now be undertaken. 
Such a combination of the two drugs may bear increased 
benefit in treating both ASD and MS. However, it must be 
emphasized that this regimen is not intended to reverse all 
of the pathology created by either malady. It will probably 
not change already existent dysconnectivity in ASD and not 
reestablish fully functional musculature in MS.
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