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Abstract
Retinal degenerations (RDs) are a vast and heterogeneous group of inherited degenerative diseases (dystrophies) of the 
retina that lead to progressive visual loss. The study of RDs involves animal models of various forms: from those naturally 
occurring to those genetically engineered, from insects to mammals. In particular, the mouse models from the Jackson 
Laboratory, with their well characterized phenotype, locus of mutation and corresponding human genetic homolog, 
have been extensively used in RD research. Knowledge in how abnormal proteomics disrupts the cellular function of 
photoreceptors provides important guidance in the search for treatment. The potential treatments including transplantation, 
pharmacological intervention and gene therapy under investigation can also be tested in the animal models at the preclinical 
stage. This review provides an overview of the various animal models of RDs and their application in clinical research.
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Introduction
Retinal degenerations (RDs) are a vast and heteroge-

neous group of inherited degenerative diseases (dystro-
phies) of the retina that lead to progressive visual loss. 
Phenotypically, different types of RDs may be difficult 
to be distinguished from one another. As the retina only 
has a limited repertoire of cellular responses to diseases, 
photoreceptor degeneration is often followed by the pro-
liferation and migration of pigment-laden epithelial cells 
into the neurosensory retina. Clinically this is observed 
as pigmentary bony spicules on the retina. Therefore, 
RDs with characteristic pigmentary changes as such are 
coined the term “retinitis pigmentosa” (RP). It is esti-
mated that more than fifteen million people worldwide 
suffer from visual loss due to an inherited RD [1].

The study of RDs involves animal models of various 
forms: from those naturally occurring to those genetical-
ly engineered, from insects to mammals. In particular, 
mouse models of RDs are among the most frequently 
studied. The applications of animal models are multifold. 
First of all, they help to understand the pathophysiolo-
gy of RDs in humans. Many of the genetic mutations in 
animal models have been found a correspondence in hu-
mans. Knowledge in how a defective protein disrupts the 
cellular function of photoreceptors provides important 

guidance in the search for treatment. The potential phar-
macological interventions and gene therapy can also be 
tested in the animal models at the preclinical stage. This 
review will provide an overview of the various animal 
models of RDs and their application in clinical research.

Natural Animal Models
A diversity of natural animal models has been used 

in the study of RDs. A comparison of the advantages of 
each type of animal model is given in table 1.

Among the most primitive ones is the fruitfly (Dro-
sophila melanogaster), frequently employed in studies 
of the visual system. Their advantages include the large 
number of mutants available, short life cycle and their 
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Transgenic Animal Models
Natural models for RPs are usually limited to the 

autosomal recessive forms. The animal models for other 
rarer forms of RP can only be obtained through genetic 
modification. Among mammals, rodent and pig models 
are most frequently engineered transgenically.

Many transgenic mice have been produced such that 
they carry a gene mutation leading to a particular pheno-
type of RD. For example, Naash, et al. produced a murine 
model that carries a mutated opsin gene, and the resul-
tant phenotype simulates an autosomal dominant form 
of human RP [8]. Comitato A, et al. developed three mu-
rine models of RD with a knocked out Rhodopsin gene 
(Rho) or expression of the P23H dominant mutation in 
Rho. Loss of function of Rho activates calpains and apop-
tosis-inducting factor (Aif) in the photoreceptors. The 
P23H dominant mutation in Rho activates both a stress 
responses in the endoplasmic reticulum the calpain-Aif 
apoptosis pathway, resulting in photoreceptor degenera-
tion [9]. Hong, et al. also engineered a mouse model for 
X-linked RP in which the unidirectional movement of 
opsin is disrupted through RPGR mutation [10].

Transgenic porcine models make good simulations 
of human RDs because pig eyes are similar to human 
eyes in terms of the number and distribution of rod and 
cone cells. Petters, et al. produced a porcine model that 
expresses a mutated opsin gene (Pro347Leu) leading to 
early rod degeneration but slow cone loss. This phenotype 
is similar to human RP and is a desired model for testing 
treatment efficacy and safety [11].

Application: Understanding Pathophysiology
In RDs, defective genes are associated with loss of 

function of the protein product by nonsense-mediated 
mRNA decay (NMD) mechanisms, or translated into 
abnormal gene products which in turn disrupt the nor-
mal physiology of photoreceptors and eventually lead to 
cell death. Genetic and proteomic information obtained 
from animal models are invaluable for our understand-
ing of the pathophysiology of RDs [12].

Trophic signalling
Based on the animal models of RDs, it has been 

known that the survival of photoreceptors is supported 
by trophic factors, which promote cellular functioning 
and inhibit apoptosis.

Some trophic factors are derived directly from photo-
receptors. This comes from the observation that although 
the affected gene product in the rd1 mice is the rod-spe-
cific cGMP phosphodiesterase-β (PDE-β) subunit, de-
layed but extensive degeneration of cones is observed 
in humans, as well as the mouse and pig models [13]. 

fast breeding ability [2]. In fact, many of these advantag-
es are shared by the zebrafish model which allows quick 
and inexpensive screening [3]. The chicken also makes 
a good model for RD because it contains a large popu-
lation of cone photoreceptor cells, similar to the human 
retina [4].

Various mammals have been used as models of hu-
man RDs as they are genetically closer to human. In ca-
nine models, many RDs are inherited in an autosomal 
recessive manner, with the exception of one X-linked 
model [5]. Among the inherited RDs in feline mod-
els, the autosomal recessive progressive retinal atrophy 
(PRA) in the Abyssian cat is especially well described, 
although an autosomal dominant form of PRA has also 
been documented [6].

Of all mammals, murine models are most extensive-
ly employed in RD research. The Jackson Laboratory 
has developed a collection of sixteen naturally occur-
ring mouse mutants of RDs. Each named mutant has a 
known genetic mutation as shown in brackets: retinal 
degeneration (formerly rd, identical with rodless retina, 
r, now Pde6brd1); Purkinje cell degeneration (pcd); ner-
vous (nr); retinal degeneration slow (rds, now PrphRd2); 
retinal degeneration 3 (rd3); motor neuron degeneration 
(mnd); retinal degeneration 4 (Rd4); retinal degeneration 
5 (rd5, now tub); vitiligo (vit, now Mitfmi-vit); retinal 
degeneration 6 (rd6); retinal degeneration 7 (rd7, now 
Nr2e3rd7); neuronal ceroid lipofuscinosis (nclf); retinal 
degeneration 8 (rd8); retinal degeneration 9 (Rd9); ret-
inal degeneration 10 (rd10, now Pde6brd10); and cone 
photoreceptor function loss (cpfl1) [7].

Table 1: The advantages of different animal models of retinal 
degeneration.

Animal model Advantages
Invertebrates Fruit fly Cheap

Small
Short life cycle
Fast breeding

Vertebrates Zebrafish Cheap
Short life cycle

Chicken Large population of cone receptors
Dogs Similar mammalian pattern of the 

retinal cell layers
Cats Similar mammalian pattern of the 

retinal cell layers
Mice Ease of care

Large variety of disease models
Short life span
Similarities to human in terms of 
genetics and physiology

Pigs Similar to the human eyes in 
terms of size, retinal structure and 
distribution of photoreceptors
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cells. When this protective mechanism is overwhelmed, 
cone degeneration ensues as a result of excitotoxicity 
[23].

Oxygen homeostasis
The loss of rod cell population leads to a lower oxygen 

demand. The constant supply of oxygen from the choroi-
dal circulation may then cause oxidative stress to the re-
maining photoreceptors. In the rd1 model, proteins that 
protect against oxidative stress were found to be active-
ly expressed during the peak of cone degeneration and 
immediately after the loss of rods, on 50 days post-natal 
life. These proteins include antioxidant protein-2 and glu-
tathione peroxidase 2. When the maximal adaptive capacity 
of cone photoreceptors is reached, uncontrolled oxidative 
stress may contribute to cell death [24].

Phototoxicity
Mutation of the ABCA4 gene has been implicated 

in Stargardt’s disease. In the ABCA4-deficient mice, 
deposition of the lipofuscin fluophore A2E is observed 
in the RPE layer, which results in the subsequent loss 
of RPE cells and photoreceptors. However, if these 
mice are raised in the dark, A2E formation is largely 
reduced. Thus, phototoxicity may be implicated in the 
pathogenesis of certain RDs [25,26].

Application: Preclinical Testing
Animal models are useful in preclinical testing of 

potential treatment. Different sizes of animal models 
are used in different phases of trials. In general, small 
and inexpensive animals are chosen for earlier phases 
with particular interest in efficacy, while large and more 
costly animals are used later to address issues of dosage, 
safety and route of delivery. The preliminary results from 
animal models allow further clinical trials in human 
subjects [27].

Transplantation
Various tissues have been explored for transplantation 

for the treatment of RDs. In a murine model of congenital 
stationary night blindness (Gnat1−/− mice), Ali RR, et al. 
observed that the transplanted rod precursors were able 
to form synaptic connections with second-order bipolar 
and horizontal cells in the recipient, projecting visual 
signals to higher visual areas in the cerebral cortex [28].

Retinal pigment epithelial cell (RPE) transplantation 
was performed on an RCS rat model, with results showing 
efficacy and safety [29]. Selective transplantation of rods 
was found to promote cone survival in the RD mouse 
[30]. Light-driven ganglion cell responses were detected 
in the rd mice after transplantation of neural retinal 
tissue isolated from newborn normal C57/BL6J mice on 

On the other hand, co-culture with photoreceptors from 
wild-type rats has been found to slow down the rate of 
degeneration. Thus, the survival of cone photoreceptors 
may rely on trophic factors that are contributed by rods 
[14]. This rod-derived cone viability factor was found to 
exist in two polypeptide isoforms of either 17 kDa or 34 
kDa in size [15]. Two isoforms of the rod-derived cone 
viability factor. The truncated form (RdCVF) is a thi-
oredoxin-like protein produced by rod photoreceptors 
that promotes the survival of cones, while the full-length 
isoform (RdCVFL) consisting of a thioredoxin fold that 
confers protection against oxidative stress [16]. RdCVF 
binds to the transmembrane protein Basigin-1 (BSG1), 
which in turn binds to the glucose transporter GLUT1, 
resulting in increased glucose entry into cones, stimu-
lation of aerobic glycolysis and therefore promotion of 
cone survival [17].

A number of other trophic factors have been found 
to be implicated in RDs. It was found that the expres-
sion of survival growth factors is enhanced by Dickkopf 
3(Dkk3) - involved in the aWnt signaling pathway in 
mammalian tissues [18]. The importance of the insulin 
receptor substrate gene (Irs2) was demonstrated in an-
other mouse model, with widespread photoreceptor loss 
observed after this gene was knocked out [19]. Insulin 
and insulin-like growth factors are responsible for the 
activation of phosphoinositide 3-kinase (PI3-kinase), 
which brings on the Akt (protein kinase B) cascade that 
inhibits caspase-3 cleavage, rendering the caspase-de-
pendent apoptotic pathway inactive [20]. On the other 
hand, basic fibroblast growth factor (FGF2) has demon-
strated positive effects on rod survival in vitro, mediated 
by the mitogen-activated protein kinase signalling path-
way [21]. During stress conditions, the increase in ciliary 
neurotrophic factor (CNTF) levels may be favourable for 
neuronal survival. This growth factor binds to the α-sub-
unit of its receptor on the plasma membrane, leading to 
heterodimerization with two β-subunits and subsequent 
activation of intracellular signaling pathways that pro-
mote survival e.g. Janus kinase/signal transducer and ac-
tivator of transcription (JAK/STAT) pathways [22].

Glutamate homeostasis
In the rd1 mice with PDE-β mutation, continuous 

depolarization of rods leads to opening of voltage-gated 
calcium channels and excessive glutamate release. To 
protect against excitotoxicity, L-glutamate/L-aspartate 
and glutamine synthetase may be upregulated by Muller 

aWnt signaling pathway: The name Wnt is a portmanteau of Int (meaning 
Integration) and Wg (meaning “wingless-related integration site). It is a group 
of signal transduction pathways consisting of the canonical Wnt pathway, the 
noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium 
pathway. All three pathways are activated by binding a Wnt-protein ligand to a 
Frizzled family receptor, which passes the biological signal to the Dishevelled 
protein inside the cell.

https://en.wikipedia.org/wiki/Signal_transduction
https://en.wikipedia.org/wiki/Cell_polarity
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/Ligand_(biochemistry)
https://en.wikipedia.org/wiki/Frizzled
https://en.wikipedia.org/wiki/Cell_surface_receptor
https://en.wikipedia.org/wiki/Dishevelled
https://en.wikipedia.org/wiki/Dishevelled
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packed with transgenes. These liposomes are uptaken 
into cells by endocytosis [41]. Viral vectors commonly 
manipulated include herpes simplex virus, adenovirus, 
adeno-associated virus (AAV) and retroviruses such as 
lentivirus.

There are limitations associated with using viral vec-
tors for gene transfer. For example, the location of genet-
ic transduction by lentivirus is unpredictable. Although 
both actively dividing and senescent cells are transduced, 
the integration of viral genome into the host genome is 
random and thus associated with unknown risks [12]. 
For adenovirus, gene transfer is efficient but the subse-
quent expression of transgene is usually not sustained. 
Immune reaction against adenovirus is another short-
coming that limits its application [42].

Adeno-associated virus serves as a promising viral 
vector for gene transfer. The transfer of genes coding for 
neurotrophic factors using recombinant adeno-associat-
ed virus serotype 2 (rAAV2) has been shown to promote 
survival of photoreceptors in many mouse models of RD 
[43]. In a canine model of Leber’s congenital amauro-
sis with a mull mutation in RPE65, AAV transfer of this 
deficient gene was found to restore vision with minimal 
side effects [44].

Following on their work, Bainbridge JWB, et al. 
performed gene therapy in 12 patients with Leber’s 
congenital amaurosis using a rAAV2 vector delivering 
the RPE65 complementary DNA. Improvement in 
retinal sensitivity was observed in 50% of the patients for 
up to 3 years [45]. In another study, the AAV vector was 
used to deliver an artificial protein known as ZF6-DB 
which binds to the regulatory element of the Rhodopsin 
gene, switch off the expression of the defective copy 
of Rhodopsin gene and insert a normal copy of the 
Rhodopsin gene into living pig cells [46].

However, the use of AAV as a viral vector of gene transfer 
still needs further investigations for fine adjustment. The 
kinetics of transgene expression is affected by the serotype 
of AAV, of which AAV2/5 was found to be faster in terms 
of action [47]. The mechanisms of genomic transduction, 
either as episomal or integrated genetic materials, also 
require further control in future clinical trials.

Choice of Animal Models
Albeit being useful tools for studies in RD, the appli-

cation of animal models is associated with limitations. In 
general, primitive animals such as fruitflies are used to 
study the genetics and pathophysiological mechanisms 
of RDs owing to their low cost, short life cycles and fast 
breeding property. As the extent of validity of extrapolat-
ing the results from animal experiments depends on the 
resemblance of the animal model to the human condi-

day 13 postnatal life [31]. Recent studies also explored 
the efficacy of stem cell transplantation in photoreceptor 
replacement. Hippocampal progenitor cell transplant 
in the RCS rat was found to demonstrate neuronal 
differentiation and morphological integration [32].

Pharmaceutical therapy
Knowledge in the pathophysiology of RDs provides 

guidance for the search for possible pharmaceutical 
therapy.

Various growth factors have been involved in 
therapeutic trials. In the study by LaVail, et al. fibroblast 
growth factor beta (bFGF) was demonstrated to slow 
down disease progression in the RCS rat [33]. Ciliary 
neurotrophic factor (CNTF) was also shown to be capable 
of morphological rescue in several animal models of RD 
[34]. Other trophic factors shown to be neuroprotective 
in RD animal models include brain-derived neurotrophic 
factor (BDNF) and glial cell line-derived neurotrophic 
factor (GDNF) [35].

In the RPE65-deficient mice, oral retinoid supplement 
was found to be useful in bypassing the block in visual 
cycle attributable to the mutation [36]. Similarly, vitamin 
A supplement was shown to significantly reduce the 
decline of a-wave and b-wave amplitudes in the T17M 
opsin mutant mouse [37].

Growth factors specific to the eye were also tested 
in animal models. Intravitreal injection of pigment 
epithelium-derived factor (PEDF) and the associated 
peptides in the signalling pathyway in the rd1 model was 
found to promote photoreceptor survival [38].

Knowledge in the apoptotic pathway of photorecep-
tors has provided new directions for neuroprotection. 
Paquet-Durand F, et al. found that pharmacological in-
hibition of calpain for short periods of time (16 hours) 
conferred neuroprotective activity in the rd1 model [39]. 
In a mouse model of primary cone degeneration (cpfl1), 
pharmacological inhibition of histone deacetylase was 
found to protect cpfl1 cones in vitro in retinal explant 
cultures, and the abnormal cone migration pattern in the 
cpfl1 retina was significantly improved [40].

Gene therapy
Local administration of therapeutic agents has its 

limitations. Intraocular penetration is unpredictable 
when the drug is administered topically on the cornea 
or systemically. Intravitreal injection can bypass the 
blood-retina barrier (BRB), but repeated injection is as-
sociated with cumulative risk. This leads to the clinical 
trials with gene therapy in animal models of RDs.

The vehicle of gene delivery may be viral or non-viral. 
Non-viral vehicles include specially designed liposomes 
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in an in vitro model of retinitis pigmentosa. J Neurobiol 39: 
475-490.
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tion under investigation, large mammals such as pigs are 
used for therapeutic trials especially gene therapy [48]. 
In particular, mouse models are extensively used in RD 
researches due to easy breeding and maintenance, and 
the availability of a large spectrum of well-defined genet-
ic defects.

Conclusion
Various animal models, from those naturally oc-

curring to those genetically engineered, from insects to 
mammals, have enhanced our understanding on retinal 
degenerations. In particular, the mouse models from 
the Jackson Laboratory, with their well characterized 
phenotype, locus of mutation and corresponding hu-
man genetic homolog, have been extensively used in RD 
research. Knowledge in how genetic defects affect the 
pathophysiology of photoreceptors has shed light on de-
veloping potential treatment for RDs. Preclinical trials of 
cellular transplantation, pharmaceutical treatment and 
gene therapy involving animal models of RDs are under 
way. The preliminary efficacy and safety data from an-
imal models are invaluable for the guidance of clinical 
trials in human patients of RDs.
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