Case Report

Suture Derived Foreign Bodies in Ophthalmic Surgery

Gysbert-Botho van Setten, MD, PhD*

Department of Clinical Neurosciences, Karolinska Institute, St Eriks Eye Hospital, Sweden

Abstract

Usually swaged end suture attachments to the needles are preferred providing most atraumatic suturing possible. However, we report on the possible release of foreign material from sutures whilst performing penetrating glaucoma surgery (trabeculectomy). In this surgery any release of foreign material would have imposed a significant risk on the success of surgery and the health of the eye. The foreign bodies were less than 100 μm in size and very difficult to see without the microscope. As we consider these incidents potentially hazardous but easily avoidable, we urge our fellow surgeons, to carefully examine the surgical tools and sutures carefully prior and after surgery. The key sign of a faulty suture attachment is an enhanced resistance when pulling the needle through the tissue such as the sclera. The additional force exerted to pull the needle through is enough to deliberate foreign material. Any foreign body left behind in the wound has the potential to put the success of any surgery at risk.

Introduction

In today’s ophthalmic surgery the surgeon relies on the quality of suture material. The desired characteristics of sutures used vary depending on location and purpose in various aspects such as expected tensile strength, thickness, color, needle form and length etc [1]. One of the highest demands is, however, the expectation that the material causes only minimal local inflammation and, most of all, does not to leave any residues within the wound. The specific demands on sutures have been identified and outlined in a specific guidance document, published by the FDA 2003 [2]. The desired properties determine the choice of the suture. The plethora of available properties have been reviewed recently and include, amongst others tensile strength, diameter, tissue absorption, coefficient of friction, knot security and strength, elasticity and plasticity [3]. Sutures have become high-tec products and have to be considered as temporary implants. With this they are often not just neutral foreign bodies but may, for example due to their possible content of residual metal catalysts, also cause unwanted side effects, such as inflammation [4]. Still, in spite of rigorous technical product checks (such as quality inspection and multistep inspections of raw materials as well as technology in-process inspections, it is apparently still possible that foreign substances might be introduced by sutures and released in the operation field, as this reports shows. Apparently, glues used to attach the needle to the suture material may be amongst these agents. Release of such larger particles from suture material has, so far, and to the best of our knowledge, not been reported. Glues as materials, often contain raisin, such as polyepoxy adhesive [5], which can be potentially toxic or prone to cause additional inflammation. Also, could the process of covalent bonding of cyanoacrylate and methacrylate resins by copolymerization, explored extensively in dentistry [6], deliberate substances that could, if not eliminated cause or sustain inflammation. Reported toxicity of cyanoacrylate may manifest as conditions such as urticaria, contact dermatitis and other dermatoses [7]. The suture material itself by its chemical composition is less likely to cause inflammation, if produced according to the protocols. Reactions may occur but are usually only very minor. In general are ophthalmic surgeons extremely dependent on the quality of the suture material, they rely on them heavily as their performance and high-tec reliability often is the key to even conduct some surgeries. As in all microsurgery, sutures are often very difficult to put into position and not seldom the surgeon only has one single chance to set the suture right. This outlines the importance of our observation when we report on the release of foreign bodies form suture material during glaucoma surgery in three cases.

Cases

Case 1

In the final phase of a trabeculectomy as usual a commercially available 10-0 nylon suture (dyed in black, Company and Product™ name deleted due to legal aspects) was used to re-adapt the scleral flap. The suture comes as double armed syringes, 60 cm long, with a box of 10 needles. Nevertheless, it was not possible to fit the needle without any problems, and it was necessary to use a needle holder. After the suture was tied in a knot, a small amount of glue was released from the needle. This was followed by a rapid increase in resistance when pulling the needle through the tissue. The foreign body was less than 100 μm in size and very difficult to see without the microscope. As we consider these incidents potentially hazardous but easily avoidable, we urge our fellow surgeons, to carefully examine the surgical tools and sutures carefully prior and after surgery. The key sign of a faulty suture attachment is an enhanced resistance when pulling the needle through the tissue such as the sclera. The additional force exerted to pull the needle through is enough to deliberate foreign material. Any foreign body left behind in the wound has the potential to put the success of any surgery at risk.

*Corresponding author: Gysbert-Botho van Setten, MD, PhD, Department of Neurosciences, Karolinska Institutet, St Eriks Eye Hospital, Polhemsgatan 50, 11282 Stockholm, Sweden

Accepted: September 10, 2019
Published online: September 12, 2019
use. Alerted by the previous incident the needle and suture were inspected under the microscope. Here, at the end of the needle there where the suture had come off a similar pearl was discovered (Figure 3).

Case 2

Shortly after case 1 a fresh unused suture (Company and Product™ name deleted due to legal aspects) was used. Again, as usual, it was divided into two by a cut in the middle. Then the first part was used uneventfully whereas the second part of the suture went off just behind the needle prior to use. Alerted by the previous incident the needle and suture were inspected under the microscope. Here, at the end of the needle there where the suture had come off a similar pearl was discovered (Figure 3).

Case 3

A year after the cases one and two the same resistance was observed when suturing a scleral flap. It was at the end of an uneventful surgery, until when trying to pull the needle through the scleral flap, the resistance was so strong that the needle had to be taken out reversed and to be visually expected. Also here a fresh unused suture of the same kind and make (Company and Product™ name deleted due to legal aspects) was used. Here, the same material as in cases 1 & 2 was discovered, looking like a miniature translucent olive, exceeding the diameter of the needle with approximately 30% (Figure 4). The other end of the suture the suture material was swaged into the needle.

Discussion

The techniques of attaching sutures to needles are usu-
ally not the surgeons concern as we rely on the sophisticat-
ed manufacturing processes and regulations. Additionally
are most of these techniques intellectual property, as such
protected by patent laws and seldom revealed or discussed
in public. The available data and case reports touching this
issue are hence minimal. Similarly, these matters are usually
not the surgeons concern. However, the present cases re-
veal a different reality. According to US3981307A US patent
application surgical sutures are attached to needles by me-
chanically clamping or by applying a suitable liquid adhesive
to the end of the suture before inserting the suture end into
a hole in the blunt end of the needle. The idea to use adhe-
sives to join needles and sutures is not new [5] but has been
optimized throughout the years with new materials coming
into existence. Nevertheless, in the process of applying adhe-
sives, the proper curing or hardening of the liquid adhesive
compound is required to hold the suture firmly in place. In
this process the adhesive compound may not always cure to
proper hardness, creating a weakened bond or may be dis-
lodged. With such attachments a technique of reattachment
as recently suggested by Tillo [8] is not possible. When using
adhesives, in order to optimize their adhesion to the mate-
rial additional special preparation of the suture tip and the
needle may be required. In the present cases the diligence
of this processes, or their realization, apparently was not
sufficient and the adhesive did come off. As these materials
are not intended to be released or remain in the wound and
especially not in the eye the observed incidents do deserve
our total attention. As stated above apparently the manufac-
turing methods are responsible for this plastic or resin like
material to remain in some of these sutures at place, there
where the suture material is attached to the needle. It must
be emphasized that the observed issues did occur only occa-
sionally but repeatedly and only with the 10-0 nylon suture.
As to the best of the surgeons’ knowledge the foreign bodies
released from the suture have always been identified and re-
covered. We can therefore only speculate about the sequel-
ae a foreign body can cause if left in the eye. The resulting
scenario reaches from an inert encapsulated foreign body
leaving the surrounding totally unharmed and silent to the
possibility of significant inflammation threatening not only
the result of surgery but also the eye itself. In all cases, the
postoperative course was totally uneventful. However, due
to the observations made and if not done routinely already,
fellow surgeons are encouraged to carefully look at these
insertion points prior to applying the suture in the tissue. In-
creased resistance of the needle passing through tissue is a
hallmark for the presence of material attached to the suture
or needle that is not the intended or desired to be there.
The force required for needle penetration through a target
material should be only related to the needle wire diameter
and its hardness [9]. As the needle wire diameter should be
the largest diameter of the entire suture, including the nee-
dle, any component on the needle increasing this diameter
is not acceptable. Any material on the suture larger in size
than the largest wire or needle diameter in the patient’s eye
does impose a significant risk of introducing foreign bodies
of unknown nature into the operation field. Especially in
glaucoma surgery where any fibrotic reaction or inflamma-
tion is highly undesirable no foreign body or agent left in the
operation area, possibly introducing inflammatory reactions,
can be acceptable [10].

It is concluded that, in spite of high demands on suture
material it is apparently still possible that foreign bod-
ies might be introduced into the operation field by sutures.
Ophthalmic surgeons have this fortune to be able to inspect
any suture material under the microscope for the presence
of such material on the sutures prior to the application of it
in the wound. It is urgently recommended that any unusual
resistance during the use of sutures should lead to immediate
inspection of the sutures in the search for foreign material.

Acknowledgement

The support and help in technical issues of the Avia-
tion-Ophtalmology Inc., Danderyd, Sweden is gratefully ac-
knowledged.

The company of the product is acknowledged for their
interest in the events presented here and for their feed
back after receipt of the information. As the company was
pointing out not be able “to give any guarantee to you or the
publishers regarding the possible legal consequences of the
publication of your article at the present time”, the company
name is not mentioned or disclosed.

References

1. Chu CC (2013) Materials for absorbable and nonabsorbable sur-
gical sutures. In: Martin W. King, Bhupender S. Gupta and Robert
Guido, Biotextiles as Medical Implants. Woodhead Publishing,
275-334.

2. (2003) US Department of Health and Human Services Food and
Drug Administration Center for Devices and Radiological Health:
Guidance for Industry and FDA Staff: Class II Special Controls Guid-
ance Document: Surgical Sutures; Guidance for Industry and FDA.

3. Dart AJ, Dart CM (2011) Suture material: Conventional and stimu-

W. King, Bhupender S. Gupta and Robert Guido, Biotextiles as


6. Antonucci JM, Bowen RL (1977) Adhesive bonding of various
materials to hard tooth tissues: xiii synthesis of a polyfunctional

adhesives and their occupational impacts for dental staff. Ind
Health 42: 207-211

8. Tillo O (2014) Reattaching the surgical thread to a needle: a

tion of surgical needles. Biomaterials 9: 281-284

needle to a suture. US patent Application 1989-09-27, App/Pub
Number US07791075, 1991-11-12