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Introduction
Food is a symbol of a people's history, culture, and unique 

identity. Traditional knowledge, generational experience, 
agro-climatic conditions, and the availability of food resources 
have all influenced the development of fermented foods. 
Their development is influenced by conventional ideas, racial 
preferences, religious convictions, socioeconomic systems, 
gastronomic traditions, and social restrictions imposed 
over time by successive rulers. Non-fermented foods and 
fermented foods (including alcoholic beverages) are the 
two divisions of ethnic foods [1]. Food fermentation is an 
ancient technique in India, where uncontrolled or reverse 
fermentation is practiced as a domestic skill. Worldwide, 
there are more than 5000 different varieties of fermented 
foods and alcoholic beverages [2].

In the northeastern part of India, more than 250 different 
kinds of fermented foods and alcoholic beverages are 
produced and consumed [3]. Due to its probiotic properties, 
improved shelf life, protection, sensory benefits, and 
nutritional value, fermented foods, beverages have grown 
in popularity and are used more regularly [4]. Probiotics, or 
fermented meals with living bacteria, have gained appeal to 
improve human health in recent years [5]. The WHO (World 
Health Organization) defines probiotics as "live bacteria that, 
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when administered in suitable amounts, confer a health 
benefit on the host" [6,7]. They serve as the foundational 
cultures in ethnic cuisine and stimulate numerous productive 
and profitable enterprises. They are used as a starter culture 
in ethnic foods, boost a variety of functional and economic 
activities. Probiotics aid in food preservation, and LAB's 
functional antibacterial activity reduces the number of 
undesirable microbes in milk products, making them safe for 
human consumption [8].

Fermented foods have been shown to include lactic acid 
bacteria (LAB) such as Lactobacillus plantarum, Lactobacillus 
acidophilus [9], Lactobacillus mesenteroides, Lactobacillus 
lactis, and Pentobacillus pentosaceus [10]. Fermented 
soybean meal contains Bacillus spp. as well [11]. Yeast and 
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fungi considerably facilitate fermentation [9]. Pathogenic 
organisms like B. cereus, S. aureus, and Enterobacteriaceae 
have been found in fermented foods like ngari, hentak, 
and tungtap [12]. However, dominant lactic acid bacteria 
prevented these harmful strains from multiplying, resulting 
in reduced CFU (colony forming units) units and decreased 
pathogenicity [13]. Ocins, which are proteinaceous 
antibacterial compounds, are produced and secreted by 
probiotics. Ocins, proteinaceous antibacterial compounds, are 
produced and secreted by probiotics. Listeria monocytogenes 
(LM), Listeria innocua, B. cereus, S. aureus S1, S. mutans DSM 
6178, K. pneumonia, P. aeruginosa BFE162, E. bifidum BFE 
282, and E. agglomerans BFE 154 are a few pathogenic Gram-
positive and Gram-negative bacteria that have been deemed 
hostile [14,15].

LM is a serious contaminant that has caused the dairy 
industry to suffer enormous financial losses. Global listeriosis 
outbreaks have been documented, and LM is a concern for 
the food industry [16]. The northeast of India has very little 
LM, the cause of listeriosis, present or dispersed there [17]. 
The consumption of fermented foods rich in probiotics, which 
create ocins, may be the reason why these foods can affect 
infections like Listeria spp. LM is a zoonotic bacterium that 
can be found in food and can grow at temperatures between 
4 and 37 °C. Listeria, which is brought on by consuming, 
causes septicemia, meningitis, stillbirths, and miscarriages.

Those who have compromised immune systems and 
pregnant women are more vulnerable to listeriosis. It is 
a serious foodborne infection that leads to health issues, 
including pregnancy-related abortions, in developing nations 
like India. Unlike bacteriocins or antimicrobials, the pathogen 
has developed resistance to antibiotics like daptomycin 
and tetracycline. Researchers are interested in the food 
spoilage bacteria's broad-spectrum antimicrobial activities, 
particularly against LM.

The major goal of the review is to investigate the health 
benefits of traditional fermented foods from India. The review 
then concentrates on listeriosis, its causes, and potential 
remedies. The greatest treatment and prevention method 
for listeriosis is to consume native fermented foods from 
India. According to historical records, listeriosis has never 
caused an abortion in a woman in northeast India. Locals in 
this region consume fermented foods because they've been 
proven to be healthier. We therefore want to investigate and 
link traditional fermented foods to listeriosis, especially in the 
northeastern section of the state.

Fermented Foods and Beverages
Around the world, everyone's diet contains a substantial 

amount of fermented foods and beverages. They have 
advantageous functional characteristics and are produced 
spontaneously as a preservation mechanism. They differ 
in their tastes, textures, enticing looks, and flavours as well 
as how they are used. They were made to give the body 
vitamins and minerals [18]. While spontaneous fermentation 
is employed in Asia and Africa, starter cultures are used 
in New Zealand, Europe, North America, and Australia to 
generate fermented foods [19]. India's traditional method of 

spontaneous fermentation is called backslopping [20]. The 
previous fermented product can be used in this process as 
an inoculum source to ferment the food samples [21]. Most 
fermented food producers and consumers are in Northeast 
India.

Ethnic groups made the traditional fermented foods 
utilising ingredients derived from animals or plants [3]. 
Probiotic bacteria included in fermented foods can act as 
a starter culture, changing substrates that are acceptable 
to consumers on a cultural and social level [22]. Probiotic 
attributes, such as fibrinolytic activity [23], antioxidant 
activities [24], antibacterial properties [25], and anti-nutritive 
chemical breakdown, were observed in the helpful bacteria 
found in fermented foods, according to Hill, et al. [7,26]. 
When choosing a starting culture to produce valuable meals, 
these traits serve as a defining attribute [27]. In general, the 
bacteria present in fermented foods enhance a variety of 
health benefits when consumed [28].

The "Kinema-natto-thua nao triangle" (KNT triangle) was 
created by Tamang (2015) and later expanded to Indonesia. It 
claims that naturally fermented soybean foods concentrated 
with bacteria and moulds are frequently consumed in India, 
Japan, and Thailand, the triangle's three vertices [29,30]. 
The main constituents are Pediococcus pentosaceous (P. 
pentosaceous), Lactobacillus plantarum, and Lactobacillus 
brevis. P. pentosaceous from Hamei, an alcoholic starter, 
produces bacteriocin against LM [31]. The production of 
Hawaijar, a traditional non-salted fermented soybean meal 
with Bacillus spp. as the main bacterium, is well-known in 
Manipur and has a considerable positive impact on human 
health [32].

Table 1 [3,10-12,14,31-40] shows fermented foods, 
sources, probiotics, and India's biggest consumer state. Figure 
1B shows fermented foods produced by northeastern states 
including significant LAB bacteriocin producers. In South 
India, fermented foods made from rice are the most popular. 
Idli, dosa, and uthappam are among the most very well 
delicious foods in South India. Mixed yeast and LAB cultures 
mediate the fermentation [40]. Most LAB strains and Bacillus 
spp. are hostile to food spoilage germs, which presents a risk 
to the food industry. A major source of worry is the possibility 
that listeriosis would impact the dairy, meat, and vegetable 
industries. The potential for infection to be fatal [41].

Probiotics and Their Attributes in Fermented 
Foods

Metchnikoff's research around the beginning of the 
twentieth century gave rise to the idea of probiotics. The 
findings of Ilya Ilyich Metchnikoff's research showed that LAB 
intake can enhance host health. By consuming fermented 
foods like yoghurt, cheeses, other fermented milk products, 
and fermented meat products, people can frequently find 
LAB, a well-known probiotic that includes Lactococcus and 
Lactobacillus, in their guts. Other popular probiotics include 
Bifidobacterium, Pediococcus, and Leuconostoc strains [42-
44]. The classic example of a symbiotic connection is the gut 
microbiota, which is crucial to the maintenance of the host's 
physiology and health. The intestinal bacterial community 
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Table 1: Fermented foods of Northeast India.

Sl. No Fermented 
food (local 
name)

Substrate/Raw 
material

Sensory attributes, 
Nature, and use

Probiotic Major consumer 
States in India

Reference

1 Kinema Soybean Alkaline, Sticky, 
flavoured; curry

Bacillus 
subtilis

Darjeeling hills 
and Sikkim

Sarkar, et al., [33]

Tamang [34]

2 Hawaijar Soybean Alkaline, Sticky, 
flavoured; side-dish

Bacillus sp. Manipur Jeyaram, et al., [32]

Singh, et al., [35]

3 Tungrymbai Soybean Alkaline, Sticky, 
flavoured; curry

Bacillus sp. Meghalaya Chettri and Tamang [11]

4 Bekang Soybean Alkaline, Sticky, 
flavoured; side-dish

Bacillus sp. Mizoram Chettri and Tamang [11]

5 Aakhone Soybean Alkaline, sticky, paste, 
curry

Bacillus sp. Mizoram Singh, et al., [35]

6 Peruyaan Soybean Alkaline, sticky, side-
dish

Bacillus sp. Arunachal Pradesh Singh, et al., [35]

7 Gundruk Leafy vegetable Dried, sour-acidic; 
soup, pickle

LAB Darjeeling hills, 
Sikkim

Tamang, et al., [36]

Tamang, et al., [37]

8 Sinki Radish tap-root Dried, sour-acidic; 
soup, pickle

LAB Darjeeling hills, 
Sikkim

Tamang, et al., [36]

Tamang, et al., [37]

9 Inziangsang Mustard leaves Dried, sour; soup, curry LAB Nagaland, 
Manipur

Tamang, et al., [37]

10 Khalpi Cucumber Sour; pickle LAB Darjeeling hills, 
Sikkim

Arunachal Pradesh

Tamang, et al., [36]

Tamang, et al., [37]

11 Mesu Bamboo shoot Sour; pickle LAB Darjeeling hills 
and Sikkim

Tamang, et al., [30]

12 Soibum Bamboo shoot Sour-acidic; curry LAB Manipur K. Jeyaram, et al., [10]

13 Soidon Bamboo shoot tips Sour-acidic; curry LAB Manipur K. Jeyaram, et al., [10]

14 Ekung Bamboo shoot Sour-acidic; curry, soup LAB Arunachal Pradesh K. Jeyaram, et al., [10]

15 Eup Bamboo shoot Dry, acidic; curry, soup LAB Arunachal Pradesh K. Jeyaram, et al., [10]

16 Hirring Only tips of bamboo 
shoot

Sour-acidic; curry, soup LAB Arunachal Pradesh K. Jeyaram, et al., [10]

17 Dahi Cow milk Curd, savoury LAB, yeasts Assam, Sikkim, 
Meghalaya,

Tripura

Tamang, et al., [31]

Jeyaram, et al., [38]

18 Chhurpi Cow milk Curry, pickle LAB, yeasts Darjeeling hills, 
Sikkim

Tamang, et al., [31]

19 Chhu/Sheden Cow/Yak milk Soft, strong flavoured; 
curry

LAB, yeasts Sikkim, Darjeeling 
hills, Arunachal 
Pradesh, Ladakh

Tamang, et al., [31]

20 Somar Cow/Yak milk Paste, flavoured; 
condiment

LAB Darjeeling hills, 
Sikkim

Tamang, et al. [31]

21 Philu Cow/Yak milk Cream; fried curry with 
butter

LAB Sikkim Tamang, et al. [31]

22 Ngari fish Fermented fish; curry LAB, yeasts Manipur Thapa, et al. [12]

23 Hentak Fish and petioles of 
aroid plants

Fermented fish paste; 
curry

LAB, yeasts Manipur Thapa, et al. [12]

24 Tungtap Fish Fermented; pickle LAB, yeasts Meghalaya Thapa, et al. [12]
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25 Gnuchi River fish Smoked; curry LAB, 
Bacillus, 
yeasts

Darjeeling hills, 
Sikkim

Tamang, et al. [14]

26 Suka ko 
Maacha

River fish Smoked, sun-dried; 
curry

LAB, 
Bacillus, 
yeasts

Darjeeling hills, 
Sikkim

Tamang, et al. [14]

27 Sidra Fish Dried fish; curry LAB, yeasts Darjeeling hills, 
Sikkim

Tamang, et al. [14]

28 Sukuti Fish Dried fish; curry LAB, yeasts Nepalis Tamang, et al. [14]

29 Hamei Rice, wild herbs Dry, ball-like, white 
starter, alcoholic 
beverage

Moulds, 
yeasts, LAB

Manipur, Sikkim Tamang, et al. [31]

30 Marcha Rice, wild herbs, 
spices

Dry, flattened ,ball-like, 
white starter, alcoholic 
beverage

Moulds, 
yeasts, LAB

Assam, Sikkim, 
Meghalaya,

Arunachal Pradesh

Tamang, et al. [31]

31 Humao Rice, barks of wild 
plants

Dry, flat, cake-like 
starter

Moulds, 
yeasts, LAB

Manipur Tamang, et al. [39]

32 Thiat Rice-herbs Dry, flattened, ball-like, 
white starter

Yeasts Meghalaya Tamang, et al. [39]

33 Khekhrii Germinated rice Starter to ferment 
zhuchu

Yeasts Nagaland Tamang, et al. [39]

34 Inziang-dui Mustard leaves Liquid, sour; condiment LAB Nagaland, 
Manipur

Tamang, et al. [3]

35 Anishi Taro leaves Fermented; sour; curry LAB Nagaland Tamang, et al. [3]

36 Lung-siej Bamboo shoot Sour-acidic; curry LAB Meghalaya Jeyaram, et al. [10]

Tamang, et al. [3]

37 Bastanga Bamboo shoot Sour-acidic; curry LAB Nagaland, 
Manipur

Tamang, et al. [3]

38 Miyamikhri Bamboo shoot wet, sour-acidic; curry LAB Assam, Nagaland Tamang, et al. [3]

39 Soijim Bamboo shoot Liquid, sour; condiment LAB Manipur Tamang, et al. [3]

40 Karati Fish Dried, salted; curry LAB, yeasts Assam Tamang, et al. [3]

41 Bordia Fish Dried, salted; curry LAB, yeasts Assam Tamang, et al. [3]

42 Lashim Fish Dried, salted; curry LAB, yeasts Assam Tamang, et al. [3]

VSL#3, a probiotic blend of eight distinct strains, is efficient 
in both the management and prevention of diabetes and 
obesity [51].

Serum cholesterol levels are lowered when fermented 
milk containing large amounts of Lactobacillus and 
Bifidobacterium is consumed [52]. By permeating the 
intestinal mucosal layer and promoting phagocytic activity in 
the spleen and other organs, Lactobacilli and Bifidobacterium, 
for instance, can assist in regulating the host immune 
response [53]. By lowering bacterial toxins, probiotics have 
positive effects in the treatment of liver illnesses [54]. Healthy 
adults who consume Lactobacillus paracasei for four weeks 
see a decrease in Escherichia coli in their faeces and ammonia 
levels as well as an increase in Lactobacillus, Bifidobacterium, 
acetic acid, and butyric acid [55].

Exopolysaccharides, bacteriocins, organic acids, and 
antibacterial substances are only a few of the various 
molecules that probiotics produce. In the gut, dangerous 
microorganisms are eliminated by the bacteriocins and acids 
[56,57]. It is well known that LAB can sense its surroundings 

must be maintained with a healthy, balanced diet. Over the 
past ten years, it has become clear that metabolic illnesses 
including type 2 diabetes and obesity are greatly influenced 
by the gut flora (T2D). Intestinal homeostasis has been 
disturbed by the westernized obesogenic diet, which is high 
in simple carbohydrates and saturated or trans fats, which 
results in insulin resistance [45]. One important risk factor for 
type 2 diabetes is obesity [46]. Hyperglycemia, a metabolic 
condition marked by elevated blood glucose levels, is a 
feature of T2D [47].

According to several investigations, LAB has anti-diabetic 
potential. In high-fat diet animals demonstrating biochemical 
alterations, probiotic dahi containing Lactobacillus acidophilus 
and Lactobacillus casei prevented the progression of diabetes 
[48]. According to a different study, some LAB strains may 
act as bio-therapeutics for the treatment of diabetes by 
promoting the production of gut hormones like GLP-1 and 
GIP [49]. Additionally, LAB strains exhibit the highest levels 
of -glucosidase inhibition activity, which lowers blood glucose 
levels and glucose absorption to help prevent T2D [50]. 
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Figure 1: Listeriosis Outbreak in India.

in food. It is a food-borne pathogen and a threat to the food 
industry, possessing attributes like the ability to grow even 
at 4.0 °C, resistance to extreme pH, metals, and disinfectants 
[70-72]. LM causes the invasive illness listeriosis [73].

LM infection
LM is connected to numerous public health problems all 

throughout the world. In addition to abortions, meningitis, 
meningoencephalitis, septicemia, and stillbirths, it is 
associated with visceral, neurologic, and reproductive 
clinical entities. A dangerous infection called listeriosis can 
harm expectant mothers, elderly people with compromised 
immune systems, newborns, people with kidney diseases, HIV 
patients, and even those who come into touch with animals 
[74-77].

It has been discovered that healthy people's intestines 
contain LM [78,79]. Contrary to typical foodborne pathogens 
like Salmonella spp., which seldom result in fatalities, 
listeriosis is now known to have a staggering fatality rate 
of up to 30% [78]. The common serotypes linked to human 
listeriosis include 1/2a, 1/2b, and 4b [80]. Since the placenta 
acts as a breeding ground for LM, pregnant women are 
more susceptible to infection. This can result in spontaneous 
miscarriages, neonatal infections, placental necrosis, 
stillbirths, severe necrotizing hepatitis, and a high risk of post-
implantation failure [81,82]. Pregnant women with latent 
listeriosis are more likely to experience abortions, intrauterine 
deaths, and abnormalities in the foetus [83,84]. Pregnant 

and create bacteriocins and organic acids that, by lowering 
pH and boosting peristalsis, prevent pathogen colonization. 
By keeping hazardous pathogens out, the intestinal barrier is 
strengthened, which directly affects the gut microbiota [58].

Mucin is secreted by intestinal epithelial cells to prevent 
the colonisation of microbial pathogens. Surface adhesins are 
secreted by certain Lactobacillus strains to aid in their ability 
to adhere to the mucosal layer [59-61]. The Caco-2 cell line 
has been successfully utilised for the past three decades to 
assess the probiotics' in vitro adhesion capacity. The ability 
of LAB strains to colonise intestinal epithelial cells with the 
maximum degree of adhesion makes them an effective 
barrier against harmful bacteria [47]. However, HT-29 cells 
can also be used to assess intestine adhesion capacity. The 
most significant amount of L. rhamnosus MG4502 adhered to 
HT-29 cells [46].

Listeria Monocytogenes (LM) and Listeriosis
Food safety is a serious concern in the modern public 

health world [62]. Disease outbreaks in a variety of foods 
have been linked to the genus LM of bacterial pathogens 
[63]. Food samples from around the world, including meat, 
milk, and dairy products, have all been shown to have Listeria 
spp [64-67]. LM is a zoonotic, non-sporulating, Gram-positive, 
rod-shaped, facultative, intracellular, virulent bacteria 
that thrives at temperatures between -2 °C and 50 °C, with 
optimal growth occurring between 30 °C and 37 °C [68,69]. It 
is a hazard to the food business and a pathogen that is found 
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spontaneous abortions. Because of its irregular occurrence in 
India, Chugh's [92] growing concern over the novel foodborne 
illness Listeriosis is due to this. According to Prem Saran 
Tirumalai's clinical research, the prevalence of listeriosis in 
the Indian Subcontinent amply demonstrates both newborn 
and maternal listeriosis [93]. Listeria in humans was originally 
discussed by Usha, et al. in 1966 [94,95]. Figure 1A shows 
the geographical risk map for listeriosis in India from 1961 
(61 years). According to Bhujwala, et al. [96], LM is the 
etiological cause causing abortions and premature births in 
India. They isolated LM from 3 of 100 women having bad 
obstetric history. Later again in 1975, they isolated LM from 9 
of 670 women possessing terrible obstetric history. Krishna, 
et al. later isolated LM from the cervix of 21 women with a 
poor obstetric history. Stephen, et al., [97], found 4 abortion 
cases out of 40 women in their study of diverse LM infections. 
According to Kaur, et al. [77], L. monocytogenes was found 
in 3.3% of spontaneous abortion cases. Children born to 
LM infected mothers had meningitis and hydrocephalus, 
according to Gogate and Deodhar [87].

In order to comprehend the epidemiology of listeriosis, 
serology is a crucial technique. However, the cross-reactivity 
with other related bacteria hinders the study. Serological 
assays can use virulence factors unique to LM as antigens 
to investigate the pathophysiology of listeriosis. Listerolysin 
O (LLO), its main virulence factor, is detected using ELISA-
based methods to determine whether an animal or a human 
has listeriosis [98-100]. With the help of the study, we have 
reason to believe that India's north and west had experienced 
a listeriosis outbreak with high fatality rates. Although reversal 
was seen after eating fermented meals high in probiotics, 
which stop pathogen growth in food, it is probable that this 
is connected to eating contaminated foods. Compared to the 
rest of India, South India has experienced fewer breakouts. 
The listeriosis outbreak in India is detailed in Table 2 [77,87-
89,96,97,101-113], and the sickness is graphically shown in 
Figure 1C.

LM in foods
In India, LM has been found in both clinical cases and foods 

derived from animals [77,93,114,115]. This pathogen can be 
found frequently in raw tropical seafood and ready-to-eat 
foods. This bacterium might be living in a "biofilm" -a coating 
of extracellular polysaccharide matrix- in food processing 
facilities [63,93]. Gulab Jamun, Rasagolla, curd, and payasam 
have been identified as sources of Listeria welshimeri, L. 
murrayi, and L. seeligiri [116]. LM can be used to treat human 
listeriosis because it is responsive to some medicines and 
resistant to others; nevertheless, multidrug-resistant species 
have evolved.

Antibiotic Susceptibility and Resistance
Antibiotics are chemicals made naturally, semi-

synthetically, and synthetically that prevent bacterial growth 
(bacteriostatic) or eradicate bacteria (bactericidal) [117,118]. 
Depending on their method of action, they are categorised 
as bacteriostatic or bactericidal, or as narrow-spectrum or 
broad-spectrum drugs [119,120]. In order to help reduce 

women have a 17-fold higher prevalence of listeriosis than 
the general population [85]. The clinical condition known as 
granulomatosis infantiseptica is brought on by the foetus' 
increased susceptibility to infection during pregnancy 
[86]. Meningitis and hydrocephalus are caused by infected 
moms during childbirth in newborns [87]. The most recent 
publications emphasise the significance of the pathogen as 
a contributor to infant mortality and spontaneous abortions.

Pathogenesis density Global Scenario
Women from different countries, including India, who 

have had numerous abortions and have a poor obstetric 
history, have been discovered to have listeriosis [88-90]. 
According to the CDC, spontaneous abortion occurs in 
the second and third trimesters of pregnancy in one-third 
of all human listeriosis cases (Centre for Disease Control 
and Prevention). 10-20% of cases in England and Wales 
result in pregnancy and neonatal disease, while 15-25% of 
infections result in stillbirths and abortions [91]. The CDC has 
reported a Listeria strain outbreak in six American states as 
of November 9, 2022. A total of 16 persons became ill after 
consuming Listeria spp.- contaminated meat and cheese from 
deli corners, one of whom became ill while pregnant and 
miscarried. The CDC reported a Listeria outbreak on May 14, 
2021, in four states of the United States of America due to 
Quesco Fresco that was tainted with Listeria spp. Four of the 
13 affected individuals were ill during pregnancy, which led 
to two miscarriages and one early birth. The eating of Olaf 
ice cream tainted with Listeria monocytogenes resulted in the 
infection of a total of 28 persons, the majority of whom are 
residents of Florida. Seven women experienced illness during 
pregnancy, with one miscarriage.

An outbreak of LM was caused by consumption of Listeria 
spp.-contaminated enoki mushrooms, a Korean product, and 
36 illnesses were documented. Two foetuses died in six of 
the cases, which were related to pregnancy. In Los Angeles 
and Orange counties, California, in the first six months of 
1985, 86 instances of Listeria monocytogenes illness linked 
to Mexican-style cheese were documented. This occurred in 
58 mother-infant pairings, resulting in 29 fatalities. A total 
of 5576 instances of listeriosis were recorded in the 10-year 
(2010-2019) case study in Germany, with 9% of the cases 
being connected to pregnancy.

A sentinel hospital in China recorded 211 occurrences of 
listeriosis between 2013 and 2017, with 55 resulting in foetal 
fatalities. Due to a multistate outbreak of Listeriosis in 1998-
1999, the CDC reported that two pregnant women in the 
United States spontaneously aborted their unborn children. 
In one of the 178 cases that were documented, 36 moms (or 
around 20%) suffered spontaneous abortions, according to 
Mylonakis. In the remaining 142 cases, 97 neonates (about 
68%) had the infection at birth. Because of this, obstetricians 
give a lot of thought to avoiding, identifying, and managing 
pregnancy.

LM Infection in India
In India, there is less evidence than in developed nations 

to support the correlation between pathogenic LM and 
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Table 2: Listeriosis in India.

Year Place Report No. of Cases Reference 

1966 Maharashtra Maternal Listeriosis 21 Krishna, et al., 

1972 Delhi Maternal Listeriosis 3 Bhujwala, et al. [96]

1975 Delhi Maternal Listeriosis 9 Bhujwala, et al. [89]

1977 Karnataka Maternal Listeriosis 4 Stephen, et al. [97]

1981 Delhi Neonatal 3 Thomas, et al. [101]

1981 Maharashtra Meningitis 1 Gogate and Deodhar [87]

1995 Delhi Pericarditis 1 Revathi, et al. [102]

1997 Delhi Septicaemia ,Neonatal 3 Gupta, et al. [103]

1998 Delhi Perinephric abscesses 1 Gomber, et al. [103]

2003 Punjab Maternal Listeriosis 1 Gupta, et al. [88]

2003 Karnataka Abortion 2 Dhanashree, et al. [104] 

2005 Varanasi Neonatal 1 Srivastava, et al. [105]

2007 Punjab and Uttar Pradesh Maternal Listeriosis 9 Kaur, et al. [77]

2010 Kashmir Meningoencephalitis 1 Peer, et al. [106]

2010 Himachal Pradesh Neonatal 1 Mokta, et al. [107]

2014 Karnataka Meningitis 1 Dias, et al. [108]

2016 Maharashtra Meningitis 1 Nirhale, et al. [109]

2018 Tamil Nadu Septicemic Listeriosis 1 Miraclin, et al. [110]

2018 Karnataka Meningitis 1 Mahadevaiah, et al. [111]

2019 Delhi Meningitis 1 Gulla, et al. [112]

2021 Kerala Sepsis and Meningitis 1 Ajimsha Ashna, et al. [113]

ribosomally generated, antimicrobials also contain post-
translational changes, also referred to as "postbiotics" [129].

Bacteriocins have both restricted and broad-spectrum 
activity as they inhibit a wide variety of bacteria, both related 
and unrelated [128]. They are known to be rapid to kill germs 
that are resistant to antibiotics [130]. These substances are 
GRAS (generally acknowledged as safe) microorganisms 
that are utilised as food biopreservative in the food 
industry. Perhaps they are used in place of conventional 
antibiotics to treat illnesses in humans and livestock used 
for food production. Bacteriocins play a significant role in 
the food industry since they are absorbed by the human 
gastrointestinal (GI) tract [131]. In recent years, a substantial 
number of LAB bacteriocins have been characterized [132].

By generating channels in the target cell membrane that 
allow low-molecular-weight ions to exit, they cause the proton 
motive force to collapse [133]. According to Klaenhammer 
[134], there are four different types of LAB bacteriocins: Class 
I, which is commonly referred to as lantibiotics and includes 
lanthionine, dehydrated residues, and methyl lanthionine; 
class II, which includes non-lanthionine peptides (less than 
10 kDa); class III, which includes large heat-labile proteins 
(greater than 30 kDa); and class IV, which is bac NISIN, a class 
I lantibiotic produced by the LAB Lactococcus lactis (GRAS), 
is one of them and inhibits both Gram-positive and Gram-
negative bacteria [135,136]. It is the only bacteriocin for the 
preservation of processed cheese that has been approved 
by the FDA [137]. It is the only bacteriocin for processed 

food-borne illness, antibiotics are employed in the food 
business. The evolution of antibiotic resistance in bacteria 
that cause food deterioration has been linked to the usage 
of antibiotics in the food industry. In LM, resistance has 
grown to gentamicin, tigecycline, tetracycline, ciprofloxacin, 
ceftriaxone, and trimethoprim-sulfamethoxazole. Because 
the strain is primarily serotype IV sensitive, ampicillin, benzyl 
penicillin, linezolid, meropenem, rifampicin, and vancomycin 
can be employed to prevent food contamination [121]. 
Antibiotics are not thought to be safe in the food and cattle 
industries and have detrimental effects when consumed 
by humans. It is prohibited to utilise them in agriculture 
and the production of food. Pressure to limit antibiotic use 
in agriculture and the food sector has made antimicrobial 
peptides and potential antibiotic surrogates more prominent 
as effective natural alternatives to fight contamination 
and microbial infections [122,123]. Less time was spent 
researching safe medicinal chemicals such antimicrobial 
peptides (bacteriocins) and more time was spent reducing 
the usage of antibiotics [124,125].

Antimicrobial peptides (AMPs) or Ocins
The potential natural antimicrobials known as bacteriocins 

were first found by Gratia around a century ago [126]. 
They are proteinaceous, heterogeneous groups of cationic, 
amphiphilic, and/or hydrophobic antimicrobial peptides 
derived from both Gram-positive and Gram-negative bacteria 
unfriendly to closely related strains, and act at pico- to 
nano-molar doses [127,128]. Unlike antibiotics, which are 
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LAB strains obtained from fermented foods against Listeria 
spp. P. pentosaceus HS: B1 isolated from Hamei produces 
bacteriocin that is effective against L. monocytogenes and L. 
innocua [31]. P. pentosaceus MA: C1, an isolate from Marcha, 
contained inhibition zones against Listeria spp [31]. It was 
discovered that Sukako Maacha LAB strains were effective 
against Listeria spp [14]. Isolates of fermented foods that are 
resistant to food-borne illnesses are listed in Table 3.

Consuming some Bacillus strains has been demonstrated 
to be healthy [32]. Bacillus subtilis produces the bacteriocin 
Subtilosin A, which has antibacterial activity against LM [146]. 
However, Subtilosin A1 (3412.5 Da), which is produced by the 
hemolytic mutant of Bacillus subtilis, has more antibacterial 
activity against LM [139,147]. Additionally, a number of 
clinically significant drug-resistant pathogens, including 
methicillin vancomycin antibiotic-resistant Staphylococcus 
aureus (MVRSA), vancomycin-resistant Enterococcus faecalis 
(VRE), and methicillin-streptomycin antibiotic-resistant 
Staphylococcus epidermidis (MRSE), are susceptible to the 
antimicrobial effects of Bacillus spp [130].

Host Immune Response against LM
The pathogen of the genus Listeria that causes listeriosis 

in humans is called Listeria monocytogenes (LM) [148,149]. 
Similar to human infection, the pathogen is ubiquitous, 
saprophytic, and opportunistic [149]. Meningoencephalitis, 

cheese preservation that has received FDA approval [137]. 
Pediococcus acidilactici produces Pediocin PA-1, a Class II 
bacteriocin, which prolongs the shelf life of ready-to-eat 
foods by inhibiting LM [138]. Bacillus subtilis Class I ocin 
subtilin suppresses LM in a variety of ways [139]. Both gram-
positive and gram-negative bacteria, including Salmonella 
spp., Campylobacter spp., Escherichia coli, Vibrio spp., Brucella 
spp., and Yersinia spp., can result in food poisoning. Well-
known pathogenic bacteria include B. cereus, C. botulinum, 
C. perfringens, B. anthracis, and S. aureus [41]. Because of 
recurring and severe listeriosis outbreaks, pathologists have 
been studying LM for the past decade [132]. The search 
for bacteriocin-producing LAB has since been turned to 
compounds that target Listeria spp., yielding a huge number 
of anti-listerial bacteriocins. These days, probiotics with lactic 
acid bacteria, such as Lactobacillus and Bifidobacterium, are 
widely used [140-143]. In fermented foods, they prevent 
potentially harmful bacteria from expanding, colonising, 
and multiplying [144]. There is a long history of safe usage 
of Bacillus strains in the food industry, and they produce a 
variety of antimicrobial peptides and proteins [139].

Ocins against LM
Bacteriocins that block LM are particularly interesting 

and have drawn a lot of research funding [145]. There aren't 
many published investigations on the antibacterial activity of 

Table 3: Probiotics of fermented foods antagonistic to food spoilage bacteria.

Sl. No. Fermented food Probiotic Pathogen Reference

1 Dahi LAB Enterobacter agglomerans, Enterobacter 
cloacae, Klebsiella pnuemoniae

Tamang, et al. [31]

2 Mohi LAB Enterobacter agglomerans, Enterobacter 
cloacae, Klebsiella pnuemoniae

Tamang, et al. [31]

3 Chhurpi LAB Enterobacter agglomerans, Enterobacter 
cloacae, Klebsiella pnuemoniae

Tamang, et al. [31]

4 Somar LAB Enterobacter agglomerans, Klebsiella 
pnuemoniae

Tamang, et al. [31]

5 Cow philu LAB Enterobacter agglomerans, Klebsiella 
pnuemoniae

Tamang, et al. [31]

6 Yak philu LAB Enterobacter agglomerans, Klebsiella 
pnuemoniae

Tamang, et al. [31]

7 Hamei Pediococcus 
pentosaceous HS B1

Listeria monocytogenes,

Listeria innocua

Tamang, et al. [31]

8 Suka ko macha Lactococcus lactis Listeria innocua

Staphylococcus aureus

N.Thapa, et al. [14]

9 Inziangsang Lactobacillus 
plantarum

Staphylococcus aureus Tamang, et al. [37]

10 tungtap Lactobacillus 
coryniformis, Bacillus 
subtilis

Enterococcus faecium DSM 20477

Streptococcus mutans DSM 6178

N.Thapa, et al. [12]

11 Fermented milk 
products from 
Himalayan regions

Lactobacillus and 
Lactococcus

Enterobacter agglomerans, Enterobacter 
cloacae, Klebsiella pnuemoniae, 
Pseudomonas aeruginosa

Tamang, et al. [31]

12 Marcha Pediococcus 
pentosaceus MA:C1

Listeria sp. Tamang, et al. [31]
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several countries' antibiotic restrictions are a subject of 
concern [170]. LM is naturally resistant to antibiotics such 
cephalosporin, nalidixic acid, and fosfomycin [171]. As a 
result, as antibiotic resistance increases, antibiotic therapy 
fails [172]. Artificial preservatives may lower food quality 
because LM can flourish in any meal at any temperature 
[173]. Although the use of bacteriocins or other antimicrobial 
substances in the meat sector is well known, antimicrobial 
substances are currently being researched for use in the dairy 
industry. Bacteriocins from probiotics have been shown to 
stimulate an immune response against LM and so minimise the 
mortality rate from Listeriosis. Probiotics provide protection 
against intracellular bacterial infections when taken orally 
and function as an alternative to antibiotics [174]. Potential 
probiotic options Lactobacillus and Bifidobacterium are 
present in many foods, especially fermented dairy products 
[175]. Via preventing adhesion to intestinal epithelial cells by 
colonisation replacement, probiotics prevent the invasion of 
the intracellular pathogen [176,177].

By coming into touch with monolayers of intestinal 
epithelial cells, pre-treatment of enterocytes with probiotic 
bacteria prevents the invasion of Listeria [178]. By promoting 
mucin expression, maintaining tight junctions, and bolstering 
cytoskeletal integrity, the probiotics improve gut barrier 
function and decrease bacterial translocation [177,179-181]. 
Probiotic bacteria enhance the epithelial and mucosal barriers 
by releasing butyrate, a short-chain fatty acid produced 
during microbial fermentation [182]. Probiotic pre-treatment 
of monolayers prevents listeria infection by raising anti-
inflammatory IL-10 cytokines and lowering pro-inflammatory 
IL-8 cytokines in the cells, according to in-vitro experiments 
using the C2eBb1 epithelial cell model [178].

The host response is changed by increased IgA production 
and decreased pro-inflammatory IFN-γ [183,184]. IL8 draws 
macrophages and leukocytes to the infectious inflammation 
region [185]. A visual illustration of listeriosis with Bacteriocin 
and the host immune response is shown in Figure 2. By 
raising TNF-α and IFN-γ levels, mono-association with LAB 
and subsequent Listeria infection strengthen mice's immune 
systems. By enhancing bacterial clearance from the liver and 
spleen, it also stops mice from dying when an illness lasts 
for a week. 2011 (Doss and associates). S-layer proteins, a 
type of probiotic bacterial cell component, neutralise toxins 
and prevent pathogen colonization [186]. Human beta-
defensin-2 (hBD2) gene expression is induced by probiotics 
such as Pediococcus pentosaceus, Lactobacillus acidophilus, 
Lactobacillus fermentum, and the probiotic combo VSL#3, 
which results in the formation of defensins that improve 
mucosal barrier function. This was due to the signalling 
pathways of AP-1, NF-kB and mitogen-activated protein 
kinase (MAPK) [187].

The P. acidilactici UL5 strain of this LM inhibitor, which 
was isolated from fermented sausages, shows potential. 
According to in-vivo research, pre-treatment with Pediocin 
PA-1, followed by LM infection, causes the liver and spleen to 
be cleared of bacterial pathogens [188]. Oral administration 
of bioengineered Lactobacillus casei for the treatment of 
LM infection in pregnant and non-pregnant mice (BLP). The 

vomiting, diarrhoea, flu-like symptoms, and spontaneous 
abortions in pregnant women are all indications of the food-
borne illness listeriosis [150]. Immune-compromised elderly 
people and pregnant women have died from listeriosis 
[149]. Since 1980, scientists have researched the molecular 
mechanisms behind LM's pathogenicity [151]. Understanding 
the immune response brought on by this intracellular infection 
is necessary to combat listeriosis [152]. Since the pathogen 
is present in both industrially produced and raw foods, LM 
consumption is prevalent. Considering both sporadic and 
epidemic cases, contaminated food is the major source of 
infection [67,153].

The number of bacteria in the liver rose, with the 
hepatocyte acting as the main site of infection. Kupffer cells 
(KC) in the liver gathered cytokine releases, T-lymphocyte 
proliferation, and anti-listerial immunity [154]. Macrophages, 
which are the major target of the innate immune response, 
cause the release of chemokines such interleukin-12 and 
tumour necrosis factor alpha (TNF-α) (IL-12). This triggers 
a bactericidal response by activating macrophages and 
triggering natural killer (NK) cells [155-157]. The host 
produces TNF-α, IL-6, IL-12, IL family, and gamma interferon 
(IFN-γ) as acute inflammatory cytokines in response to LM 
[155,158-160].

In the early stages of liver colonisation, IL-6 draws 
neutrophils to the sites of infection. Neutrophils then release 
chemokines like monocyte chemoattractant protein-1 (MCP-
1) and colony stimulating factor-1 (CSF-1), which boost the 
number of macrophages at the localised infection site and 
kill LM-infected hepatocytes [161-163]. The entire clearance 
of the bacterial burden is aided by adaptive immunity, which 
is mediated by IFN-γ and CD-8, according to a week's worth 
of post-infection trials. TNF-α, IFN-γ, and IL-12 are produced 
by infected macrophages in addition to adaptive immunity 
[151]. In the hepatocytes of an immune-compromised host or 
a pregnant woman, bacteria grow without restriction before 
spreading hemogenously to the brain and other organs [164].

Studies on pregnant mice show that LM enters the foetus 
through haematogenous penetration of the placental barrier 
[151]. The placental villi are infected after the decidua basalis, 
causing necrosis and inflammation. Macrophages are not the 
primary participants in an immune response. To infected foci 
in the decidua basalis, CSF-1 draws neutrophils. LM may travel 
through the foetal bloodstream and cause stillbirth, early 
birth, or infection to the baby because to bacterial colonisation 
in the trophoblast layer and endothelial translocation. Due 
to high amounts of pregnancy hormones like oestrogen, the 
T-cell-mediated immune response is compromised during 
pregnancy. IFN-γ, IL-2, and IL-12 production are consequently 
decreased, all of which are necessary to remove infection. 
Consequently, increased susceptibility to LM was observed 
during pregnancy [165-167] in fetus and placenta due to local 
depression of cell-mediated response [168].

Although LM responds to a variety of drugs, listeriosis is 
challenging to treat. Only a small number of antibiotics have 
bactericidal qualities, while the majority have bacteriostatic 
properties [169]. Because of the rise of antibiotic resistance, 
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fermented foods. Fermented foods rich in probiotics help 
foods develop immunity against LM, which lowers the rate of 
abortion. To fully understand the microbiota of all fermented 
foods from the Northeast, more study is required. It is 
necessary to record the ethnic tribal population of the region 
and their distinctive food customs. To fully comprehend 
the microbial repertoire in fermented foods, more study is 
required.
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