Table 10: List of clustering recommendation techniques.

Techniques REF# Algorithm Features/Specifications population Functional Non-Functional
Clustering-Recommendation [FS1] k-means QoS credibility, CF, PCC, User clustering, Service clustering QoS - +
[FS17] HAC Data sparsity, Clustering QoS prediction, PCC, User similarity QoS - +
[FS4] HAC Personalized recommendation, CF, Users location, PCC QoS - +
[FS3] k-means NLP, Tag recommendation, NGD, Tag relevance WSDL + -
[FS9][FS26] k-means QoS recommendation, Matrix factorization, Location based QoS - +
[FS20] k-means PCC, Cosine, Euclidean distance, CF, customers clustering WS + -
[FS21] HAC WordNet, Cosine, TFIDF, Matrix factorization OWL-S + -
[FS30] k-means RCM, Cosine, CF, PCC, WordNet, QoS prediction QoS, WS + +
[FS11] k-means CluCF, PCC, Data sparsity, Location user clustering QoS - +
[FS46] k-means Mining web services, Heterogonous feature selection WSDL, Tags + -
[FS40] HAC Real time QoS, PCC, User clustering, Qos predication QoS - +
[FS49] HAC, SASKS Hybrid Term Similarity, Euclidean distance, WSDL, OWL-S + +
[FS50] Fuzzy C-Means PCC, Matrix factorization, NGD QoS, WSDL + +
[FS57] HAC Tag recommendation, SVM, Jaccard, Active learning Text + -