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Introduction
Most plants are mainly green in nature. The chlorophyll 

content is one of the important determinants of leaf color. 
Leaf color variation usually affects photosynthetic efficiency 
and causes crop failure. In 1991, Parks proved the biliverdin 
IX [alpha] is an indispensable substance for the synthesis of 
pigment groups, which used the yellow mutant hy1 and hy2 
[1]. In recent years, people realized the value of leaf color mu-
tation. Leaf color mutants have become a valuable material 
for studying photosynthesis.

Yellow mutantion have been reported in many crops such 
as rice, barley, pea, cotton, tobacco, and tomato (Solanum 
lycopersicum) [2,3]. Similarly, leaf color mutants have been 
found in various cereal crops [4-6] and most of these muta-
tions are nuclear recessive traits. The mutant ylc, yg17, chl1 
and chl9 are all controlled by single recessive nuclear genes 
[7-9]. The leaf color mutant of rice has been studied compre-
hensively. The leaf color phenotypic could be used as mark-
er. Meanwhile, it also could be used to study photosynthesis 
[10,11].

Chlorophyll (Chl) is one of the important photosynthetic 
pigments. The content of chlorophyll could directly affect the 
plant photosynthesis. The reduce of Chl (b) (chlorophyll b) 
content could directly lead the photosynthetic less [12,13]. 
Low levels of chlorophyll may lead to unhealthy plants. But 
some leaf color mutants could allow plants normal survive. 
Most of these mutants do not change all leaves to yellow. The 
green tissue could provide enough carbohydrates [14]. Leaf 
color fade is caused by inhibition of chlorophyll biosynthesis 
or rapid degradation. In previous study, most of the main rea-
son of Chl reductions was a partial block in the Chl synthesis 
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generated by photosynthetic electron transport under excess 
of light [39]. Meanwhile the PSI and PSII may linear electron 
transport under stress conditions too [40].

There are many contentious issues in the field of photo-
protective responses, and still need further research. Many 
leaf color mutants were used in the study of plant photosyn-
thesis. Here we used the transmission electron microscopy 
to obtain the structure of the mutant ym and control zs4’s 
chloroplast. The gas exchanges parameters and fluorescence 
parameters of ym and zs4 were measured. We measured the 
photosynthetic prerequisite, chlorophyll-degrading enzyme 
and the key enzyme of redox in plant. It is interesting to note 
most leaf color mutants have weak growth potential, but ym 
had similar growth vigor and biomass compared with the con-
trol zs4. The yellow mutant is used to simplify identification of 
hybrid purity and improve the efficiency of field purity identi-
fication in the hybrid production. The study of yellow mutant 
was necessary and valuable.

Materials and Methods

Plant materials
The genetically stable, yellow-leaves mutant tomato va-

riety ym, the green-leaves tomato variety zs4 were provided 
as gifts by the Tomato Research Institute of Northeast Agri-
cultural University in China (Figure 1). All plants were raised 
in the greenhouse of Northeast Agricultural University (25 °C, 
16 h light and 8 h dark), Harbin, China, in 2017-2019. The mu-
tant ym was a natural mutation from zs4. It was crossed with 
zs4 to produce F1, F2 progeny for agronomic trait analyses.

The content of the plant photosynthetic pigment
0.1g leaves of mutant ym and control zs4 (After sowing 9, 

12, 15 and 60 days) were grind into a homogenate in 10 mL 
of 95% (v/v) ethanol in dark until became white. Absorbances 
were measured at 663, 645, and 470 nm. Chlorophyll a (Chla) 
and chlorophyll b (Chlb) content were measured by the spec-
trophotometric. The experiment followed three biological it-
erations. Triplicate of experiments were performed.

Chl (a) = 13.95A663 - 6.8A645

Chl (b) = 24.96A645 - 7.32A663

Cc = 18.16A649 + 6.63A665

Transmission electron microscopy (TEM) of the 
chloroplast

The mutant (ym) was changed yellow when it cotyledon 
period. Two time points were chose (5 leaves and 10 leaves) 
to observe by using the transmission electron microscopy. 
Cut the leaves of these 2 points ym and zs4 into 1 mm × 2 mm 
segments, fixed with 2% (v:v) glutaraldehyde, washed with 
1% (w:v) PBS (0.1 M each Na2HPO4·12H2O and NaH2PO4·2H2O 
in saline), and fixed in 1% (w:v) osmic acid (pH 7.2) for 12 h 
at 4 °C. The samples were then washed with 1% (w:v) PBS; 
sequentially dehydrated with 50%, 70%, 80%, 90%, and 100% 
(v:v) acetone then join in epoxy resin. Sectioned and viewed 
under the H-7700 canning TEM (Hitachi Ltd., Tokyo, Japan).

pathway [13,15]. Many leaf color mutants such as the mu-
tant CAO Oster, et al. [16] and CHLH play an important role 
in the study of chlorophyll biosynthesis. A variety of factors 
can affect the biosynthesis of chlorophyll. The excess heme 
could control chlorophyll synthesis via negative feedback to 
form the leaf color mutant [17]. δ-amino levulinic acid (ALA) 
also plays an important role in chlorophyll bio-synthesis. Mar-
tin Muller, et al. [18] provided exogenous ALA to the barley 
leaf color mutant in dark conditions, and the leaves still could 
change to green. Muller indicated the chlorophyll biosynthe-
sis was not controlled by light [18]. The accumulation of pro-
toporphyrin (Proto) and Mg-porphyrins were demonstrated 
playing the important role in Chl biosynthesis used the Chlo-
rella mutants by Granick, et al. [19,20]. The silencing or inac-
tivation of major genes role in chlorophyll bio-synthesis also 
could cause the plant leaves color faded green [21].

The only way of plants getting carbon is photosynthesis. 
Leaf color mutants are widely used to improve photorespira-
tion efficiency and yield of crops. Coschigano, et al. [22] iden-
tified the GLUI gene from the Arabidopsis leaf color mutant 
gls and proved the GLUI was associated with photorespira-
tion [22]. This discovery provides a new way to improve crop 
yield by inhibiting the photorespiration of C3 crops to increase 
photosynthetic efficiency. In addition Gan and Amasino, et al. 
[23] identified a tobacco evergreen mutant which could ob-
tain an apparent delay in aging, meanwhile the biomass and 
seed yield increased by 40% and 52% compared to wild-type 
tobacco [23]. The tomato mutant nv was a common leaf col-
or mutant. The study of leaf color mutants can improve the 
understanding of plant photosynthesis and the role of chloro-
phyll in the presence of plants.

Redox reactions play an important role in plant photosyn-
thesis. The reactive oxygen species (ROS) come from photo-
synthesis and respiration in plants, and chloroplasts are the 
main organelles produced ROS [24]. If C3 plants grow under 
the high-light, drought and low-temperature conditions, ROS 
will accumulate with the photorespiration increasing [25]. 
ROS is considered unfavorable products in aerobic condition. 
Excess ROS production could cause the plant death. If more 
light was assimilated, the plant will cause the photo-oxida-
tive [26]. Superfluous light energy is used to synthesize ROS 
or some toxic free radicals [27,28]. To avoid the occurrence 
of this phenomenon, plants utilize a range of self-protective 
mechanisms [28-32]. Carotenoids Adams, et al., Frank, et al. 
[33,34] alpha-tocopherol, ascorbic acid (ASA) Nicholas, et al. 
[35] and glutathione (GSH) could keep the dynamic balancing 
process in plant photosynthesis. Keeping balancing requires 
the collective function of multiplication protective mecha-
nisms. Here we also focus on the chlorophyll biosynthesis or 
degradation pathways which cause the leaf color change to 
yellow in tomato mutant ym.

Except the pigment content the balance of photosystem 
I (PSI) and photosystem II (PSII) is crucial in yellow leaf mu-
tants [36]. The plant reduces to the imbalance in light ab-
sorption usually used to change distribution of PSI and PSII 
[37]. Non-photochemical quenching (NPQ) is the key process 
in PSII, by harmlessly dissipated excess light energy [38]. It is 
induced by a pH difference value in thylakoid lumen which is 
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using the Li-6400 was reference [41].

Chlorophyll fluorescence measurements
The growth well fruiting period tomatoes ym and it control 

zs4 were choice for measurement. Pulse fluorometer FMS2 

Gas exchange measurements
Portable photosynthetic rate tester (Li-6400) was used 

in here. The growth well fruiting period tomatoes ym and it 
control zs4 were choice. We measure the gas exchange at 5 
time points. Repeat three times at each group. The method of 

         

Figure 1: The green leaf tomato zs4 and the yellow leaf tomato mutant ym. A) The zs4 in mature stage; B) The ym in the mature stage; 
C) The leaf of zs4; D) The leaf of ym; E) The ym in the seeding stage; F) The zs4 in the seeding stage; G) The compare of zs4 (Green) and 
ym (yellow) fruits.
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leaves were weighed out [42]. Then, 4 ml·g-1 FW standard ex-
tract I was added (50 mM Tris-HCl (pH 8) and 0.4 M sucrose). 
The mixture was ground in an ice bath and filtered through 
a nylon cloth. Then, the filtrate was centrifuged at 12000 × g 
for 10 min at 4 °C, and 5 ml of 50 mM Tris-HCl (pH 8) was add-
ed. The suspended sediment was then centrifuged again and 
resuspended in acetone (-20 °C). The sediment was dried to 
obtain the acetone powder, which was stored at -20 °C until 
further application. Thirty milligrams of the acetone powder 
were weighed out, and 0.167 ml·mg-1 standard extract II was 
added (50 mM PBS (pH 7.5), 50 mM KCl and 0.24% Triton-X 
100). The mixture was ground in ice; the grinding fluid was 
incubated for 1h at 30 °C and then centrifuged at 12,000 × g 
for 10 min at 4 °C, and the supernatant was extracted (Min-
guez-Mosquera). Petroleum ether was used to extract Chl 
from fresh green spinach, and the substrate concentration 
was calculated (Fernandez-Lopez). Then, 0.5 ml of 50 mM PBS 
(pH 7.5), 1 mL of chlase and 2 mL of a Chl solution in acetone 
(0.2 mM Chl) were mixed in a water bath at 45 °C for 30 min. 
Then, 0.5 mL of the reagent and 4.5 mL of extracting solution 
III (Vacetone : Vpetroleum ether = 1:2) were mixed with suf-
ficient agitation and centrifuged at 8,000 × g for 6 min at 4 °C 
until separation. The OD of the bottom phase obtained was 
measured at 665 nm, 667 nm and 651 nm, and the extinction 
coefficients of 54.1 Chl, 74.9 Chl (a) and 47.0 mM cm-1 Chl (b) 
were used to obtain the reacting weights. Triplicate of exper-
iments were performed.

The key enzyme activity of redox
The growth well fruiting period tomatoes ym and it con-

trol zs 4 were choice for measurement. Superoxide dismutase 
(SOD), peroxidase (POD), and catalase (CAT) activities were 
measured by the nitro blue tetrazolium (NBT) photoreduc-
tion method Ries, et al. [43], guaiacol method Anderson, et 
al. [44] and ultraviolet absorption method Cakmak, et al. [45] 
respectively.

5 mL of 50 mM Tris-HCl buffer (containing 1 mL glycerin, 
1 mM ASA, 1 mM DTT, 1 mM EDTA, 1 mM GSH and 5 mM 
MgCl2) was added, and the sample was ground in a mortar in 
ice and then centrifuged at 20,000 × g at 4 °C for 30 min. The 
reaction fluid included 50 mM Tris-HCl (pH 7.5) buffer solu-
tion, 5 mM MgCl2, 0.5 mM GSSG and 0.2 mM NADPH, and the 
final volume was 1.2 mL GSSG was added to start the reac-
tion. Triplicate of experiments were performed.

To measure ascorbate peroxidase (APX) activity, 1g of 
leaves (no vein) was selected and ground in a mortar with 3 
mL of 50 mM PBS (containing EDTA-Na2). The homogenate 
was filtered through a double gauze and then centrifuged at 
10,000 × g centrifuged for 10 min. Thee milliliters of reaction 
liquid (including 50 mM PBS (pH 7.8), 0.1 mM EDTA, 0.1 mM 
H2O2 and 0.5 mM ASA) was added and mixed, and crude en-
zyme activity was measured by monitoring the variation in 
OD value at 290 nm for 30s (Mishra). Triplicate of experi-
ments were performed.

Chlorophyll protection
 Pigment extraction was performed as described in sec-

tion 2.1.3 for chlorophyll. The OD value was measured at 470 

(Hansatech, The British) was used on fluorescence parameter 
determination of ym and zs4. Dark stress the leaves 30 min 
then open the detect light (< 0.05 μmol m-2s-1) to get F0. Open 
the saturated pulse light (12000 μmol m-2s-1) to measure the 
Fm. Repeat three times at each group. These two results were 
used to calculate the fluorescence parameter determination: 

PSII photochemical relative quantum efficiency (ФPSII) = 
(Fm’-Fs)/Fm’

Photochemical quenching (qP) = (Fm’-Fs)/(Fm’-F0’)

Non photochemical quenching (NPQ) = (Fm-Fm’)/Fm’

Maximum photochemical efficiency of PSII under dark ad-
aptation (Fv/Fm) = (Fm-F0)/Fm 

Measurement of the levels of chlorophyll pre-
cursor substances

The growth well fruiting period tomatoes ym and it con-
trol zs4 were choice for measurement. 1 g of the dark-treated 
leaves induced with 20 mmol·L-1 acetyl propionate and 4% tri-
chloroacetic acid (w:v) was extracted, and a cationic exchange 
resin with a pH value of 4.2 was obtained. Ehrlich-Hg reagent 
was added, and ALA content was measured at 553 nm. PBS 
was used to extract the PBG, and then, the chromogenic Eh-
rlich-Hg reagent was added, and the OD value was measured 
at 553 nm. Triplicate of experiments were performed.

1 g of tomato leaves was weighed out, ground in liquid 
nitrogen, and centrifuged at 18,000 × g for 10 min. Na2S2O3 
was added, and the sample was vigorously agitated and ex-
posed to strong light for 20 min. The pH was adjusted to 3.5 
using 1M formic acid. The sample was extracted three times 
in diethyl ether, and the OD values of the aqueous phases 
were measured at 405.5 nm. Three milliliters of 0.1M HCL 
were used to leach the copro from the ether extract, and 
then, 3 ml of 1.37M HCL was used to leach the proto. The co-
pro and proto were combined, and then, 1.37M HCL was used 
to adjust the volume to 10 mL, and the OD was measured 
at 408 nm. Triplicate of experiments were performed. 10 mL 
acetone (extracted by N-hexane) was used to extract 1g of 
dark-treated yellow leaves.

The fluorescence integral of Mg-Proto:

Mg-Proto = (1.11) E420∫592
620f(λ)dλ – (0.91) E420∫570

592f(λ)dλ

2 g of dark-treated yellow leaves were selected, ground in 
an ice bath, and dissolved in 20 mL of liquor (V acetone: VNH3.

H2O = 9:1). Then, 20 mL of the acetone solution was extracted 
with N-hexane. Triplicate of experiments were performed.

The emission fluorescence intensity of the acetone phase 
(substrate):

Pchlide = (E440F640 - 0.03 E400F633) / 0.99

Study of the enzyme involved in chlorophyll deg-
radation

The growth well fruiting period tomatoes ym and it con-
trol zs4 were choice for measurement. Fresh yellow leaves of 
the ym, and normal leaves of the zs4 were selected. 5g of the 
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Chl content in mutant ym decreased sharply to only 39% of 
that in zs4 (CK). Sixty days later, in the leaves of the mutant 
ym, the total chlorophyll content was 36% that in the leaves 
of the control zs4. Total chlorophyll content of the mutant ym 
was always less than that of the zs4. After 15 days, the Chl (a)/
Chl (b) levels were relatively higher than the initial values. At 
60 days, the Chl (a)/Chl (b) levels in the leaves of both the mu-
tant ym and zs4 were twice lower than it in 9 days (Figure 2B).

Observation of chloroplast ultrastructure
The result suggested that the chloroplasts of the green 

cotyledons were normal (zs4) (Figure 3A and Figure 3C), but 
the chloroplasts of the mutant yellow cotyledons were very 
unevenly distributed in the cell (Figure 3B), and most chlo-
roplast membranes had started to be degraded (ym) (Figure 
3D). Observation of the green areas of the second leaves of 
ym and zs4 revealed that the mutant ym hardly retained the 
double membrane structure, and only some of the chloro-
plasts perfectly retained their lamellar structures (Figure 3F). 
However, the chloroplasts of the control zs4 had complete 
double membrane structures (Figure 3E and Figure 3G). The 
yellow leaves of the ym mutant exhibited completely degrad-
ed chloroplasts (Figure 3H).

Measurement of the photosynthetic parameters 
of the yellow mutant

The Pn (net photosynthetic rate) and Gs (stomatal conduc-
tance) trends were similar, and the Pn values for both the mu-
tant ym and the control zs4 decreased markedly at high light 

nm, and the carotenoid concentration (mg L-1) was calculated 
as follows. The determination of protein content was based 
on the Bradford method, with bovine serum albumin as a 
standard.

Ccar = (1000A470-2.05Chl (a)-114.8Chl (b))/248

Results

Investigation of genetic law in ym mutant
Tomato yellow mutant ym and zs4 were respectively used 

for female parent (P1) and male parent (P2). Cross pollination 
in a greenhouse. All F1 progeny had green leaves. F2 plants 
showed 193 green leaves and 59 yellow leaves, respectively 
(total 252). The result was same with the predicted 3:1 seg-
regation (p < 0.05). The result showed that a single recessive 
nuclear gene regulates the yellow leaves mutation in ym.

The ym mutant showed multifarious fade pheno-
type

The leaves of yellow mutant ym appears to fade to green. 
But the growth trend was similar to the control line of zs4. 
Meanwhile the fruit also exhibited a loss of greenness (Figure 
1).

Pigment content in different developmental pe-
riods

Chlorophyll and carotenoid contents were measured at 9, 
12, 15 and 60 days (Table S1), (Figure 2A). After 15 days, the 

         

Figure 2: A) Changes in total chlorophyll content; B) Changes in the chlorophyll a/b value.
Note: Error bars represent the standard deviation for three independent replicates. Significant differences were analysed by ANOVA, 
and the asterisk indicates significant differences in comparison with the zs4 at P < 0.05. Triplicate of experiments were performed.
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Figure 3: Observation of chloroplast ultrastructure of the ym and zs4 under TEM. A&C) The zs4 green leaves’ whole cell chloroplast 
distribution; B&D) The ymmutant leaves’ whole cell chloroplast distribution; E&G) The zs4 green leaves’ chloroplast lamellar structure 
observation; F&H) The chloroplast lamellar structure observation of ym mutant leaves.
Note: CW: Cell wall; PM: plasma membrane; Chl: chloroplast; OS: Osmiophilic granule.
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cantly lower than that of zs4 (Table S2). The chlorophyll pre-
cursors of ym and zs4 revealed that there was no precursor 
accumulation or absence throughout the process (Figure 6).

The chlorophyll degradation pathway
The activity of the chlorophyll-degrading enzyme in the 

ym was higher than that in the control variety zs4 (Figure 7). 
More chlase could accelerate the decomposition of chloro-
phyll, which may cause the leaf lose green in the mutant ym.

The key enzyme activity of redox
Two time points (5 and 10 leaves) were used to measure 

SOD, POD, CAT, glutathione reductase (GR) and APX activities. 
The results showed the APX content in ym variety was always 
higher than in zs4 (Figure 8). The chlorophyll/carotenoid con-
tents of the ym and zs4 decreased during the cotyledon peri-
od. The level of the ym was higher than zs4 at 12 days. But at 
15 days, the values for the ym were lower than zs4 (Table 1).

Discussion
Photosynthetic efficiency has been identified as one of the 

key reason to improve the yield potential of the crops [46].

In this study, yellow leaf color mutant ym was obtained. 
After cross-fertilization, the whole first filial generation ex-
hibited green leaves. While the leaf color segregation ratio 
of the second filial generation was 3:1 (green:yellow), which 

intensity. However, the Pn of ym decreased faster than that of 
zs4. Gs showed a similar trend. The Pn of ym was higher than 
that of the control zs4 when the light intensity was under 200 
μmol·m-2·s-1. Throughout the process, the trend observed for 
Ci (internal carbon dioxide concentration) was the opposite of 
that observed for Pn (Figure 4).

The PSII maximum photochemical quantum yield (Fv/Fm) 
and effective photochemical quantum yield (Fv’/Fm’) were 
constant. Notably, the effective photochemical quantum 
yield of ym was slightly lower than that of zs4 at high light 
intensity, but at low light intensity, the trend was reversed. 
The PSII actual photochemical quantum yield (ФPSII) had the 
same variation trend as Fv’/Fm’. Photochemical quenching (qP) 
of the mutant ym and the control zs4 showed a tendency to 
occur at higher light intensity. The photochemical quenching 
of ym was slightly lower than that of zs4 at 200 μmol·m-2·s-1 
light intensity. The non-photochemical quenching (NPQ) of 
mutant ym changed steadily, while that of the control zs4 
showed a tendency to decrease with increasing light inten-
sity. The apparent electron transfer rate (ETR) of zs4 was sig-
nificantly higher than that of ym except at a light intensity of 
940 μmol m-2 s-1 (Figure 5).

Analysis of chlorophyll synthesis pathway
The chlorophyll content of the mutant ym was lower than 

zs4. The chlorophyll b content of ym decreased more than 
that of zs4. The carotenoid content of ym was also signifi-

         

Figure 4: Gas-exchange parameter of the leaves of the mutant ym at different light intensities. A) netphotosyntheticrate; B) 
Stomatalconductance; C) Intercellular carbon dioxide concentration.
Note: Significant differences were analysed by ANOVA, and the asterisk indicates significant differences in comparison with the zs4 at 
P < 0.05. Triplicate of experiments were performed.
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Figure 5: Chlorophyll fluorescence parameters of the leaves at different light intensities. A) Maximum quantum yield of PSII 
photochemistry; B) FV’/Fm’; C) Quantum efficiency of PSII; D) Photochemical quenching coefficient; E) Non-photochemical quenching; F) 
Apparent rate of electron transport at the PSII level.
Note: Significant differences were analysed by ANOVA, and the asterisk indicates significant differences in comparison with the zs4 at 
P < 0.05. Triplicate of experiments were performed.

         

Figure 6.The comparison of chlorophyll precursors in ym and zs4. Triplicate of experiments were performed.
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Figure 7: Chlorophyll content and chlorophyllase activity of ym and zs4. Triplicate of experiments were performed.

         

Figure 8: Comparison of the key enzyme activity of redox in ym and zs4. Significant differences were analysed by ANOVA, and the 
asterisk indicates significant differences in comparison with the zs4 at P < 0.05. Triplicate of experiments were performed.

Table 1: Carotenoid content and ratio total chlorophyll to carotenoid content.

Time point 9d 12d 15d 60d

YmCc 1.227 ± 0.05b 1.214 ± 0.00b 1.334 ± 0.09b 0.862 ± 0.01b

ymCcar/Cc 7.012 ± 0.06a 7.453 ± 0.02a 2.786 ± 0.06b 2.412 ± 0.09a

zs4 Cc 1.452 ± 0.12a 1.324 ± 0.03a 2.598 ± 0.35a 2.512 ± 0.19a

zs4 Ccar/Cc 6.769 ± 0.26b 6.36 ± 0.43b 3.634 ± 0.15a 2.247 ± 0.42a

Data are presented as means (n = 3). Different lowercase letters (a, b, c) indicate statistically significant differences (P < 0.05) between 
treatments in the same phenotype using LSD tests.
Note: Ccar: Carotenoids, Cc: Total chlorophyll content.

The maintained chlorophyll a-to-b ratio could affect the pho-
tosynthesis [48]. The low Chl (b) content is associated also 
with the pleiotropic effects on photosynthesis [49]. In previ-
ous studies, the lack of chlorophyll content may improve the 

was consistent with Mendel’s law [47]. The result explained 
that this phenotype was regulated by a single recessive nucle-
ar gene. 15 days after seeding the ym exhibited yellow. The 
chlorophyll deficiency caused the plant leaf change yellow. 
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leaf was significantly higher than that in the control plant zs4. 
The results of REDOX activity showed that the REDOX abil-
ity of mutant ym leaves was lower than that of control zs4, 
and the ym plants were more prone to senescence and death 
compared with zs4. We suggest that the possible reason for 
this phenomenon is the decrease of chlorophyll content due 
to the reduction of chlorophyll synthesis and protective sub-
stances in the plants, which affects the REDOX ability of the 
plants and produces the phenomenon of yellow leaf.

The lack of chlorophyll-protecting substance and chloro-
plast cystic membrane degradation were the main aspects 
caused the yellow leaf phenotype in the mutant ym. The 
leaves change yellow at the cotyledon flattening stage. And 
it grows vigorously. The mutant variety ym, which lacks chlo-
rophyll in the seedling stage, could provide a platform for the 
study of chlorophyll. The mutant can be used as a seedling 
marker trait.
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Table S1: Changes in pigment content (mg·L-1) during different developmental periods.

Time points 9d 12d 15d 60d

ymCa/Cb 2.867 ± 0.03a 2.984 ± 0.02a 3.214 ± 0.05a 3.943 ± 0.23a

ymCc 8.604 ± 0.13a 9.048 ± 0.32a 3.717 ± 0.02b 2.08 ± 0.43a

zs4Ca/Cb 2.81 ± 0.77a 2.823 ± 0.04a 2.692 ± 0.09b 2.20 ± 0.66a

zs4 Cc 9.829 ± 0.02a 9.421 ± 0.03a 9.441 ± 0.21a 5.645 ± 0.34a

Data are presented as means (n = 3). Different lowercase letters (a, b, c) indicate statistically significant differences (P < 0.05) between 
treatments in the same phenotype using LSD tests.
Note: Ca: Chlorophyll a content, Cb: Chlorophyll b content, Cc: Total chlorophyll content.

Table S2: Chlorophyll and Cc content (mg·L-1).

Material pigment content Ca/Cb (mg·L-1) pigment content Cc (mg·L-1)

ym 3.869 ± 0.09a 2.537 ± 0.01b

zs4 2.135 ± 0.39c 7.623 ± 0.54a

Data are presented as means (n = 3). Different lowercase letters (a, b) indicate statistically significant differences (P < 0.05) between treatments 
in the same phenotype using LSD tests.
Note: Ca: Chlorophyll a content, Cb: Chlorophyll b content, Cc: Total chlorophyll content.
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