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Introduction
Plant growth, development and productivity are severely 

affected by various environmental stresses including drought, 
salinity, extreme temperature, and heavy metals. Being 
sessile in nature, plants have to constantly encounter such 
stresses by altering the biochemical, physiological, and tran-
scriptional activation of several stress-responsive genes [1-3].

Although remarkable advances have been made in recent 
times, the available information about mechanisms of plant 
responses to abiotic stresses in tomato plants is still scarce 
in comparison to Arabidopsis. Tomato is a member of the So-
lanaceae family and the third most commercially important 
crop. Cultivated tomato is overall considered as moderately 
tolerant to salinity [4]. Tomato was used as a model plant in 
several fields including genome sequence studies [5]. Global 
expression profiling is useful to understand the transcription-
al regulation of stress-responsive genes for improving stress 
tolerance in tomato.

Responses to different abiotic stresses require the produc-
tion of important metabolic proteins such as those involved in 
synthesis of osmoprotectants and regulatory proteins (Figure 
1). In addition to such metabolic changes, a large set of plant 
genes commonly called lea (Late Embryogenesis Abundant) 

are transcriptionally activated, which leads to the accumula-
tion of novel proteins in the vegetative tissues of plants un-
der osmotic stress [6]. Lea/Rab proteins are essential for res-
urrection plants and seeds to protect the subcellular milieu 
against irreversible damage associated with adverse effect 
[7]. They are responsible for intracellular protein transport 
and also essential regulator of vesicle trafficking way [8,9]. 
Rab  family is not only closely related to plant growth and 
development, but also plays an important role in stress and 
disease resistance.

Plant salt tolerance is a complex trait controlled by mul-
tiple genes. Transcription factors (TFs) are key regulatory 
proteins operating in signal transduction pathways. These 
regulatory proteins regulate gene expression by binding to 
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forming strong DNA-transcription factor complex in ABA and high salt treated tomato plants.
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specific DNA sequences in the promoters of respective target 
genes. This type of transcriptional regulatory system is called 
regulon. Several TFs targeting cis-acting elements involved in 
stress responsive gene regulation have been identified [10].

The expression of many lea proteins is regulated by abscis-
ic acid (ABA). ABA is referred to as the plant stress hormone 
and many of the stress signals that activate transcription are 
controlled by this phytohormone ABA. ABA participates in the 
adaptation of plant species and tissues to osmotic stresses 
like drought and salinity [11]. Besides controlling stomatal 
aperture, ABA induces the expression of several genes with 
roles in dehydration tolerance in seeds and vegetative tis-
sues [12-14]. There are existence of both ABA-dependent and 
ABA-independent pathways in the triggering of gene activa-
tion towards rapid stress response. Though the pathways can 
function independently but there are cross-talk mechanisms 
between them (Figure 1).

The promoters of such abiotic stress-responsive genes 
share regulatory sequences that are recognized by trans-act-
ing factors participating in ABA signal transduction pathways. 
Among these sequences, the ABA-responsive element (ABRE) 
has been identified as the major cis-acting regulatory element 
in ABA-dependent gene expression [10], which is recognized 
by a specific group of basic leucine zipper (bZIP) transcrip-
tion factors known as ABA-response element binding factors 
(AREBs) [15] or ABFs (ABRE-binding factors) [16]. TFs regulate 
a series of downstream stress-related genes, leading to bio-
chemical and physiological modifications necessary for plant 

adaptation towards environmental perturbations [17,18].

Plants represent a large number of TFs which are classi-
fied by their DNA-binding domains [19]. The both ABA-de-
pendent and ABA-independent signal transduction pathways 
from stress signal to expression of genes, involve different TFs 
such as AREB/ABF, MYC/MYB, DREB, NAM and their corre-
sponding cis-regulatory elements ABRE, MYCRS/MYBRS, DRE, 
NACRS. In plants, MYBs having a wide range of function in-
cluding the ABA-response, are well distributed and can work 
in conjunction with other transcription factors. A number of 
plant MYB TF members have been identified and character-
ized in numerous plant species Arabidopsis, apple, soyabean, 
maize , etc. [20-23]. The MYB TF family is not plant specific 
and is present in all eukaryotes. Extensive studies on MYB 
genes are there [24-27]. Based on the number of MYB do-
mains, the MYB protein family has been classified into 4 dif-
ferent groups, such as 1R-, R2R3-, 3R- and 4RMYB proteins, 
respectively [25,26,28].

In our previous studies we showed the level of salinity 
tolerance in different tomato cultivars like Pusa Ruby, Punjab 
Keshari, Alisa Craig and Roma. Comparative transcript pro-
filing [29] between Pusa Ruby (PR) and Punjab Keshari (PK) 
resulted in establishing PK as more salt tolerant variety than 
PR. A group of Lea genes (RabA, RabB, RabC, Rab11 were 
found generously responsive under salinity stress. In our an-
other computational approach [30] towards investigating the 
molecular basis of high tolerance of tomato, we performed 
a comprehensive analysis of the proximal promoters of can-
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Figure 1: The schematic diagram illustrates salinity stress response and transcriptional regulation in plants. Associated signaling network 
results in the activation of several stress responsive genes through the involvement of various transcription factors including the MYBs.
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environment chambers at 25-26 °C, 50% relative humidity, 
with 8-hour photoperiod. For comparison, two types of to-
mato cultivars, Pusa Ruby (PR) and Punjab Keshari (PK) were 
cultured in a hydroponic system (Figure 2) with periodical 
replacement with fresh media. Seedlings were grown for 2 
months in half strength MS [31] solution. For salt treatment, 
eight-week-old plants in a tray containing 0.5 × strength MS 
solution were supplemented with 0/200 mM NaCl (6 h) and 
25 µM ABA (6 h and O/N). Then, the plants were washed thor-
oughly with sterile de-ionized water, their leaves were sam-
pled separately and stored at -80 °C for investigations. Three 
replicates were performed for each treatment.

Preparation of tomato nuclear extract and 
South-Western Blot with the DNA probe harbor-
ing MYB motifs of Rab11b upstream

Nuclei were prepared from leaf samples of 2-month-old 
tomato plants according to the method of Roychoudhury, et 
al. [32] with some modifications. All steps were performed at 
0 to 4 °C. Plant tissues were ground to a fine powder with liq-
uid N2 Tomato nuclear extract was prepared as described by 
Oeda, et al. [33] with minor changes, and the protein content 
estimated by Bradford method [34].

About 20 pmoles (220-240 ng) of each of the two synthet-

didate members Rab1A, Rab1B, Rab1C, Rab11 of Rab gene 
family which are essential components of stress response. 
Analysis found the presence of various common stress relat-
ed cis-acting elements (CREs) in the putative promoters of 
members of this gene family. These results brought about the 
idea on focussing into the stress related transcription factor 
binding with the upstream region of stress responsive plant 
genes.

Here we report the expression of transcription factor (pu-
tatively MYB related, not sequenced) which has been found 
to be activated by NaCl/ABA induction on two different to-
mato cultivars (Pusa Ruby and Punjab Keshari). Subcellular 
localization assay indicated this factor as a nuclear-localized 
protein with transcriptional activity by binding to the Rab11b 
promoter sequence bearing the MYB consensus DNA motif 
(CNGTTR).

Materials and Methods

Plant materials, Plant growth and stress treat-
ments

Seeds of Solanum lycopersicum (L.) Pusa Ruby cv and 
Punjab Keshari cv, were kindly provided by the Amtala Seed 
Center, Amtala, West Bengal. Plants were grown in controlled 

         

Figure 2: 4-weeks-old PR A) and PK B) plants. Column 1 shows untreated plants. The treated plants are: 200 mM NaCl 6 hrs (column 2), 
25 µm ABA O/N (column 3) and 25 µm ABA 6 hrs (column 4).
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trophoretically transferred onto PVDF membrane (Hybond-P 
from Amersham Pharmacia). After blocking the membrane 
with 100 µg ml-1 sonicated salmon sperm DNA (Amersham 
Pharmacia), [γ32P]-ATP DNA probe (105 CPM ml-1 count) was 
added to the blot and incubated overnight at room tempera-
ture (25 °C) with constant shaking in 1x binding buffer (10 mM 
Tris-Cl pH 7.5, 50 mM NaCl, 1 mM EDTA, 5 mM MgCl2). The 
blot was washed 4-5 times with increasing concentration of 
salt from 50 to 150 mM, semidried and then exposed to Ko-
dak X-Omat film for autoradiograph.

Computational analysis
The SGN (Sol Genomic Network) PlantCARE database 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/; [35] RefSeq NCBI (http://www.ncbi.nlm.nih.gov). were 
used for gene sequences extraction. PLACE and PlantPAN 
were used to scan the cis-elements, in the putative Rab11b 
promoter sequence. The significance of candidate cis-ele-
ments (MYB, MYC, DPB, WRKY, GATA) was evaluated through 
scanning further with the plant promoter analysis databases, 

ic oligonucleotides were labeled at the 5´ end with 100 µCi of 
[γ32P]-ATP (5,000 Ci mmol-1), the two complementary phos-
phorylated oligonucleotides (Table 1) were mixed together 
and annealed by slow cooling, followed by probe purification. 
Binding reactions were performed essentially as described by 
Oeda, et al. [33].

South Western Blot Analysis was performed according to 
Roychoudhury, et al. [32] with slight modifications. About 50 
µg of nuclear proteins were boiled with standard SDS buffer 
and separated by 10% SDS-polyacrylamide gel and then elec-
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Figure 3: (A) PR and PK nuclear extract separated by 10% SDS-polyacrylamide gel. (B) PR and PK nuclear extract were hybridized with 
γ32P-labeled DNA probe. Two prominent bands are present (∼55 and ∼35 kDa approximately) in Lane number 1 and 2. Faint bands 
are also visible in lane 5, 6 and 3.

Table 1: Oligonucleotide primers harboring MYB motifs used for 
binding to the putative promoter of Rab11b (LOC101256455).

Primer Nucleotide sequences

Rab promoter 
Oligo-3 (Forward)

5´ ATAACAGTTAAATTATAACAGTTAAATT 3´

Rab promoter 
Oligo-5 (Reverse)

5´ AATTTAACTGTTATAATTTAACTGTTAT 3´

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.ncbi.nlm.nih.gov
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treated samples of tomato (NaCl or ABA). The intensity of the 
35 kDa protein was sharper under salinity stress than in ABA 
treated leaf samples of both the cultivars, thereby clearly sug-
gesting a role for this protein in salinity stress response me-
diated by ABA (Figure 3). Responses were found somewhat 
similar in ABA treated samples of both the cultivars but MYB-
like cis element binding complex formation was much distinct 
in NaCl treated PK samples (Figure 3). Thus the presence of 
a tomato factor that can trans-activate tomato Rab11b gene 
was confirmed triggering to the fact that Rab11b gene is very 
likely to show expression under its own promoter when sub-
jected to stressful condition in tomato. So this South-west-
ern blot result is consistent with the results obtained through 
previous transcriptomic and other analysis [29,30].

Discussion
Transcriptional Regulation of lea genes is mainly operat-

ed through ABA. This stress responsive hormone regulates 
several aspects of plant development, including seed devel-
opment, seed dormancy and desiccation tolerance of seeds. 
Abiotic stress signal network and gene expression involve dif-
ferent cis and trans-acting elements. The basic leucine zipper 

PLACE (http://www.dna.affrc.go.jp/PLACE/; [36] and Plant-
PAN web tool (PlantPAN;  http://PlantPAN.itps.ncku.edu.
tw3.0).

Results
Tomato database search revealed that the putative pro-

moter region (Supplementary 1) host a number of cis-ele-
ments and some of them are known to be abiotic stress re-
sponsive. Here our experiment with double stranded oligonu-
cleotide probe containing MYB motifs, was found to be inter-
acted with unknown protein factors under salinity stress and 
ABA imposition. In NaCl treated leaves this DNA-protein com-
plex formation was much stronger than ABA treated leaves. A 
comparison between the two tomato cultivars shows differ-
ential response to stress (Figure 2 and Figure 3).

Transcription factors binding to the MYB motif 
containing DNA probe that responds to salinity 
stress and ABA treatment in tomato plants

Southwestern blot analysis identified a ∼55 and ∼35 kDa 
transcription factors (Figure 3) in the nuclear extract of all 
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ACACNNG-DPB, WGATAR-GATA) in Rab11b promoter.
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is the major cis-element for ABA-responsive gene expression 
[10], but strong binding of TF with MYB element present in 
Rab11b promoter has a role in stress tolerance. So far 127 
MYB genes have been identified in tomato. Many such genes 
were reported to be involved in abiotic stresses. A recent re-
search [50] demonstrated that in Brachypodium distachyon, 
several MYB genes were up-regulated in presence of ABA and 
also in response to stresses like salinity or draught. Abe, et 
al. [51] showed that the Arabidopsis MYB transcription factor 
proteins AtMYC2 and AtMYB2 function as transcriptional ac-
tivators in ABA-inducible gene expression, suggesting a novel 
regulatory system for gene expression in response to ABA, 
other than the ABRE-bZIP regulatory system. Future identi-
fication and molecular characterization of this factor will be 
helpful for clarifying the mechanisms behind this DNA binding 
association conferring salt tolerance in tomato cultivars in the 
present study.

Conclusion
Tomato is one of the most widely cultivated vegetable 

crop species and more research needed to improve the cur-
rent level of understanding of the physiological and molecu-
lar mechanisms related to stress response. Here, a compari-
son was made between two tomato cultivars contrasting with 
respect to their salinity tolerance. Study we targeted the MYB 
like consensus sequence (motif-5′-CNGTTR-3′) on the candi-
date Rab11b promoter potentially involved in response to salt 
stress. Southwestern blotting has been used to investigate 
DNA-protein interactions and subsequent prediction of po-
tential protein factors. Analysis provides the information re-
garding its size and binding intensities. This analysis revealed 
the very involvement of putative MYB like factors in transcrip-
tionally co-regulatory networks and actively functional under 
abiotic stress condition. It still remains ill-defined what the 
underlying complex mechanism behind such response of the 
factor to salinity stress might be. Addressing these questions 
is the aim of the continuation of this study further.
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Supplementary 1

Rab11b upstream (1041bp) (LOC101256455)

AAAAAAATAATAAATTTTCATTAAAATTTAATATCATAATAATAAATTCGATTAAAGTTAATATTTTTCGAATCTTTATCTCTTTATTTTTTTTA-
AAAATAAAGTTATGATGCTAAAAGTGTAATTCTTGATTTTCTTGCTGCATGTGCTCAAAACTTATTTTGCTATTTGTTTATGTGTCTATGT-
GACTTTAATGCACTTCTCCAAATTACATATAATCATTTTTGAGATTATACCTTCTTACTTATTATATATATCAAAAATAAATAAATAAAATC-
CCCATTTATTTCTAAAAAAAAAAAAACATTTTCAGTGTCAAAGACTCATATGTGACTATGATCTCCCATTTTCACTGCTGTAAAAACTTTCTT-
GAACTCCACACGACTTTACTACCAAATAACATTAACGGAATTAAAATTTTCACTAAAATTTAAAATTTGAAGAAATTAAAAGGTCGCTTCG-
CCCTCGAATAATATAATAGTTAAATTTCACAAATATTAAATAAAAAAATATACACAAATTTTATTATTGTCTTCTAAATTAATAGGTGGCTC-
CATTCTAAAACAACATAACAGTTAAATTTCACAAATAGAAGATAACAAAGTATATGTAGATTTTATTATTGCCTTCAAAATTAATAGGT-
GACTTCGTCCTGGAACAATATAACAGTTAAATTTTACAAATAGAAGATCAAAAGGCGTACACAAGTTTTATCATTATCTCCAAAATTAG-
TAGATGACTCCGTCATAAAATAACATAACAGTTAAATTTCACGAATAGAAGATAAAAAGTATATGCAAATTTTGTCACTGCCTCCAAAATT-
AGTAAGTAACTCAGCGGTAAAATAACATAACAGTTAAATTTCACAAATTAAAATAAAAAAATATACGTAGATTTTATCCTTCGACAAAT-
GAGTCATTTATTGCCACCTACTTCTTTTAGTAGTACCAGAAGCAACAATTTTATTTGTTTTCCTTCTTAGAACTCTCAGCTATCTCCTTAAGTA-
AACCAAAATAGTTGATTTTGTTGAATTAATCGCAGATG
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