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Abstract
Background: Pre-interventional knowledge of arrhythmogenic substrate location may reduce interventional 
time and arrhythmias ablation risks. Magnetocardiographic Mapping (MCG) is a contactless method for non-
invasive localization of intracardiac sources used for Three-Dimensional (3D) Electro-Anatomical Imaging 
(EAI) of arrhythmogenic substrates. The aim of this study was to assess the repeatability, precision, and 
accuracy of MCG in localizing dipolar sources in an unshielded environment.
Methods: The phantom consisted of a rectangular plastic box filled with 0.9% NaCl saline solution. Multiple 
artificial current dipoles (6 mm length, 10 mA, 50 Hz) were induced with two a magnetic electro-catheters. 
The distance between two dipoles was constant. 30 seconds MCG recordings (bandwidth DC-200 Hz, 1 KHz 
sampling rate) were performed with 36 DC-SQUID sensors at distances between Sensors plane and Dipole 
Sources (SSD) decreasing from 18 to 9 cm. MCG localization was assessed by inverse solution based on the 
Equivalent Magnetic Dipole (EMD) model.
Orthogonal fluoroscopic imaging, employing lead markers to correct for x-ray divergence effect, was used to define 
the 3D physical relative position of each dipole. MCG repeatability, precision and accuracy were evaluated. The 
correlation between precision, Goodness of Fit (GOF) of the EMD model and SSD was also analyzed.
Results: Overall, optimal repeatability (Coefficient of Variation ± Standard Error of the Mean = 0.79 ± 0.43%, 
3D absolute error = 0.26 ± 0.25 cm), average localization precision (1.13 ± 0.42 cm) and average accuracy (0.2 
± 0.13 cm) were found. Localization precision improved (0.87 ± 0.3 cm) with GOF of the model increasing 
above 73% and SSD lower than 14 cm.
Conclusion: Contactless MCG provides optimal precision and accuracy in localizing dipolar sources, even 
when performed in an unshielded environment. By integrating source localization into cardiac 3D imaging by 
cardiac magnetic resonance, MCG is foreseen to provide both pre-interventional and intraoperative 3D-EAI 
of arrhythmogenic substrates.
Keywords
Unshielded magnetocardiography, Phantom validation, Localization accuracy

Introduction
Cardiac arrhythmias ablation is currently performed 

with the aid of invasive Three-Dimensional Electro An-
atomical Imaging (3D-EAI) and localization methods 
such as Carto®, EnSite Navx® or MediGuide®. Such meth-
ods use electric or magnetic fields to reconstruct cardiac 
anatomy and visualize intracardiac catheter(s), employ-
ing fluoroscopy to assess the correct initial catheter posi-
tion. Though their precision and accuracy are excellent, 
ranging from 0 to 0.5 cm in phantom studies [1-3], inter-
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ventional 3D-EAI still requires the use of radiation with 
consequent risks for both patients and operators [4] and, 
most important implies cardiac catheterization.

Especially when dealing with otherwise healthy sub-
jects, precise pre-interventional knowledge of arrhyth-
mogenic substrate location may be useful for appropriate 
patients’ selection and to minimize interventional radia-
tion time, risk of failure and can be performed with Body 
Surface Potential Mapping (BSPM) or Magnetocardiog-
raphy (MCG).

Non-invasive 3D-EAI has been recently attempted 
with the solution of the inverse-problem in terms of epi-
cardial and/or endocardial electrogram reconstruction 
from Body Surface Potential Mapping (BSPM) [5]. A fast-
er alternative to BSPM can be contactless Magnetocar-
diographic Mapping (MCG) a contactless method which 
passively records the very weak magnetic field (10 pT) 
produced by the electric activity of the heart [6]. MCG 
electric source localization is based on the inverse solu-
tion problem, which is the derivation of the maximum 
amount of information about the electrical sources asso-
ciated with the measured magnetic field distribution, by 
analyzing the magnetic field recorded outside the body. 
Since inverse problem hasn’t univocal solution, in a sim-
plified approach two approximations are needed: firstly a 
semi-infinite half-space with homogenous conductivity 
has to be considered as torso model in which magnetic 
field variations happen, secondly the entire electromag-
netic field has to be parameterized as a single Equivalent 
Current (ECD) or Magnetic (EMD) Dipole [7].

MCG can provide quantitative and qualitative parame-
ters regarding electric source localization, and it is proposed 
to obtain non-invasive Three-Dimensional (3D) Electro-Ana-
tomical Imaging (EAI) when integrated with 3D rendering 
cardiac anatomical images obtained with Cardiac Magnetic 
Resonance (CMR) or CT scan [8]. Since their beginning, 
the majority of MCG instrumentations was constructed to 
be operational in magnetically shielded rooms only [9-13]. 
Although shielded MCG is demonstrated to provide excel-
lent precision and accuracy in phantom studies [11], mag-
netic shielded rooms are still expensive and limit the wide-
spread clinical application of MCG, especially when dealing 
with critical cardiac patients. To favor clinical ambulatory 
use of MCG, multichannel instrumentation operational 
without any electromagnetic shielding have been used since 
the early 2000 [14,15].

The aim of this study was to evaluate the repeatabili-
ty, precision, and accuracy of 3D artificial dipolar source 
localization achievable with MCG in an unshielded cath-
eterization laboratory for interventional electrophysi-
ology, using a geometrically simplified phantom and a 
magnetic catheter.

Methods
Experimental instrumentation

The phantom was a simple 50 × 60 cm rectangular 
box filled with 0.9% sodium chloride saline solution, 
simulating a semi-infinite half-space of homogeneous 
conductivity (0.21 S/m).

The amagnetic catheters, used as an artificial source, 
have been previously described in detail [16]. Brief-
ly, it featured multiple electrodes for clinical recording 
of multiple monophasic action potentials, pacing, and, 
at the same time, generation of geometrically-known 
electromagnetic dipoles adequate for MCG source lo-
calization (length 6 mm, current 10 mA, duration 20 
ms, and variable pulse rate, usually 3 Hz). The catheters 
were introduced in the box through watertight accesses. 
The support was positioned on the same amagnetic bed 
used for patient recordings, exactly at the center of the 
36-point recording grid. The appropriate positioning of 
the sensors on the phantom was controlled with the aid 
of three laser beams solid to the Dewar and a specially 
designed grid placed on the phantom.

Two-projection (posterior-anterior and lateral) fluo-
roscopic imaging was used to correctly localize the phys-
ical position of each catheter. Lead markers were used 
as radiopaque references, corresponding to the center of 
each MCG sensor pick-up coil, inserted into a Plexiglas 
36-point grid. Further lateral markers were used to nor-
malize the fluoroscopic localization per x-ray divergence.

MCG mapping
MCG was performed with a 36-channel system (Car-

dioMag Imaging, Inc., Schenectady, NY, USA) in an un-
shielded laboratory equipped for interventional electro-
physiology, measuring the z-component of magnetic field 
with Direct Current Superconducting Quantum Interfer-
ence Device (DC-SQUID) sensors coupled to second order 
axial gradiometers with a 50-mm baseline, enclosed in a cy-
lindrical cryostat (the second order axial gradiometers con-
figuration intrinsically reduces the magnetic environmental 
noise, since it is insensitive to uniform magnetic fields and 
environmental gradients fields and records only gradients 
magnetic fields under the sensors).

Moreover, the instrumentation features a real-time 
Electronic Noise Subtraction System (ENSS) which auto-
matically eliminates from the MCG signals a significant 
part of the three-dimensional background noise compo-
nents (X,Y,Z) detected by three additional SQUID sen-
sors located in the dewar far from the measuring pick-up 
coils.

The intrinsic sensitivity of the system was about 30 
fT/√Hz in the frequency range of clinical interest (1-250 
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the fluoroscopy-dependent physical single dipole lo-
calization and the localization of the same dipole pro-
vided by MCG.

3.	 MCG accuracy which was the fluoroscopy-indepen-
dent MCG capability to estimate the 3D distance be-
tween two constant-spaced dipoles on the same cath-
eter.

4.	 Correlation between precision and electric field dipo-
lar pattern, expressed as GOF.

5.	 Correlation between precision and SSD.

Statistical analysis
All statistical calculations were performed with SPSS 

software, version 21.0 (SPSS Inc., Chicago, Illinois). 
Continuous variables were expressed by mean ± SD and 
were compared using Mann-Whitney U test. A p value < 
0.05 was considered as statistically significant.

Repeatability of MCG recordings were evaluated with 
the Coefficient of Variation (CV) and the Standard Error 
of the Mean (SEM) for each parameter.

Relationship measurements were obtained by Spear-
man’s rank correlation coefficient (Spearman’s Rho) and 
coefficient of determination (R2) calculation.

Results
Noise levels and noise subtraction

Typically, in the frequency range of interest (DC-100 
Hz), the peak-to peak magnetic noise was about 1 pic-
otesla (MCG) and less than 100 microvolts (μV ECG). 
After adaptive digital filtering of 50 Hz (power line) 
noise and time averaging, the sensitivity was better than 
30 fT/√Hz and the MCG signal quality was adequate to 
detect magnetic fields above 50 fT.

Hz). Signals were digitally recorded (bandwidth DC-250 
Hz, 1 kHz sampling frequency, 24-bit resolution) from 
and area of 20 × 20 cm. The MCG recording time was 30 
seconds.

MCG recordings were repeated at different Source-Sen-
sors Distance (SSD), from 180 to 90 mm and vice versa (to 
check for reproducibility), which was changed by rising the 
Dewar in Z direction (height), while the X-Y plane position 
was kept unchanged.

Post-processing of MCG signals consisted of digital 
filtering (low-pass at 100 Hz and selective COMB filter of 
power line 50 Hz noise) and time averaging, to optimize 
the signal-to-noise ratio, and magnetic field reconstruc-
tion. The time-averaging window was selected starting 
200 msec before and ending 200 msec after the signal of 
interest.

The reference baseline was automatically selected be-
fore the averaged squared wave by MCG software (40 
msec) and the inverse solution was calculated from the 
beginning to the end of the squared wave (duration 20 
msec, time resolution 1 msec).

The mean values of the three coordinates during the 
time interval were used to assess the Three-Dimensional 
(3D) position of EMD.

For each registration, the GOF of the model was es-
timated by calculating the ratio between the intensity of 
the negative and positive magnetic field components.

Parameters analyzed
To check for MCG localization consistency, 5 fea-

tures were analyzed:

1.	 Repeatability of Localization considered as the MCG 
error in localizing a motionless dipole twice.

2.	 MCG precision which was the 3D difference between 

Table 1: Repeatability calculation.

Coordinate Electrode 
couple

I measurement II measurement Absolute 
error

Mean ± SD CV ± SEM

X A

B

C

10.18

10.41

10.15

10.03

10.38

10.16

0.15

0.03

0.01

0.06 ± 0.08 0.004 ± 0.003

Y A

B

C

10.76

11.02

11.75

10.36

11.04

11.57

0.40

0.02

0.18

0.20 ± 0.19 0.01 ± 0.01

Z A

B

C

17.84

17.46

17.99

17.87

17.42

17.41

0.03

0.04

0.58

0.22 ± 0.31 0.01 ± 0.01

3D A

B

C

23.19

23.12

23.76

22.96

23.09

23.24

0.23

0.03

0.52

0.26 ± 0.25 0.01 ± 0.004
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calization difference of two dipoles of fixed known dis-
tance, embedded in the same electro-catheter, thus in-
dependently from fluoroscopic measurements, was as 
small as 0.20 ± 0.13 cm (Table 2).

GOF and SSD influence
A statistically significant difference was found be-

tween precision measurements with GOF value higher 
or lower than 73%. Indeed, precision was 0.87 ± 0.30 cm 
with GOF > 73% and 1.39 ± 0.36 cm with GOF < 73% (p 
< 0.0001). No statistical significance was found for GOF 
improvement up to 80% (p = 0.8).

SSD showed an important role in precision assess-
ment: 3D localization error was almost constant for SSD 
ranging between 18 and 14 cm, while linearly decreased 
for SSD < 14 cm (Figure 1). Precision decreased from 
1.01 ± 0.21 cm (SSD > 14 cm) to 0.78 ± 0.33 cm (SSD < 
14 cm).

Discussion
In clinical practice, MCG is increasingly used for 

non-invasive functional cardiac imaging of electrophys-
iological phenomena and for the localization of the site 
of origin of cardiac arrhythmias [8,14,15,17,18]. Such 
pre-interventional non-invasive approach is useful for a 
better understanding of arrhythmias’ mechanisms and, if 
catheter ablation is needed, could reduce the risks asso-
ciated with invasive procedures. Earlier phantom studies 
have demonstrated the accuracy and precision superi-
ority of MCG over BSPM in localizing artificial electric 
sources [11,19]. Magnetic-based technique superiority 
over electric-based methods has been also recently con-
firmed with a novel instrumentation for invasive 3D-EAI 
[2]. However, although the accuracy of contactless MCG 

Repeatability analysis
Average repeatability between two subsequent MCG 

recordings, evaluated by calculating the CV between first 
and second measurements and expressed as averaged 
value for the entire cohort ± SEM, was 0.79% (CV) and 
0.43% (SEM) with a mean 3D overall absolute error of 
0.26 ± 0.3 cm. Three coordinates showed comparable re-
sults, as considered alone. 90% of 3D error derived by Z 
coordinate error (R2 = 0.903, p < 0.0001) and was con-
siderably correlated to it (Spearman’s Rho = 0.925, p < 
0.0001) (Table 1).

Overall precision and accuracy assessment
Overall precision, estimated by comparing MCG lo-

calization with that provided by fluoroscopic imaging 
of the physical position of the catheter dipole in respect 
of the recording grid, was 1.13 ± 0.42 cm. Instead the 
localization accuracy, calculated as the MCG spatial lo-

Table 2: Accuracy calculation.

Measurement Calculated MCG 
distance

Absolute error

1 0.58 0.02
2 1 0.4
3 0.99 0.39
4 0.81 0.21
5 0.88 0.28
6 0.86 0.26
7 0.69 0.09
8 0.51 0.09
9 0.94 0.34
10 0.89 0.29
11 0.57 0.03
12 0.77 0.17
13 0.51 0.09
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Figure 1: Correlation between SSD and precision.
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able conductivity of tissues interposed between the heart 
and the sensors could impair the precision and accuracy 
of cardiac sources localization. On the other hand, this 
is only partially true. In fact, previous studies carried 
out in the Helsinki magnetically shielded room have 
shown very similar localization accuracy of the same 
amagnetic catheters in patients and in phantoms [10,19-
22]. Furthermore, the intrinsic limitation of solution of 
the inverse problem based on a single-dipole model in 
semi-infinite space with homogeneous conductivity may 
be overcome with the implementation of more realistic 
models, nowadays available and applicable with accept-
able computing time.

Conclusion
This phantom study confirms previous evidence that 

MCG-based inverse solution is highly repeatable and ac-
curate in localizing the site of origin of dipolar sources, 
even when performed in an unshielded environment, 
and using a simple model based of the source (single di-
pole) and of the volume conductor (semi-infinite space 
with homogeneous conductivity).

Since contactless MCG source localization can be 
merged into 3D rendering of cardiac anatomy obtained 
with cardiac magnetic resonance or CT scan, MCG pro-
vides accurate non-invasive pre-interventional 3D-EAI 
of arrhythmogenic substrates, without radiation and 
with less patient’s discomfort compared with BSPM and 
CT scan. Moreover, since MCG can also localize intra-
cardiac catheters MCG 3D-EAI is foreseen as a novel 
method to combine in a single package pre-intervention-
al and intraoperative arrhythmogenic source imaging to 
guide catheter ablation. However, further investments, 
engineering and software developments are still required 
to reach that target [18].
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