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Abstract
A prevalence of thyroid dysfunction is higher in the elderly as compared to the younger population. An excess or deficiency 
of trace element contents in thyroid play important role in goitro-and carcinogenesis of gland. The variation with age of 
the mass fraction of six trace elements (Br, Cu, Fe, Rb, Sr, and Zn) in intact (normal) thyroid of 33 females (mean age 
54.5 years, range 3.5-87) was investigated by109 Cd radionuclide-induced energy dispersive X-ray fluorescent analysis. 
Mean values ± standard error of mean for mass fractions (mg/kg, on dry-mass basis) of the trace elements studied were: 
Br 20.4 ± 2.6, Cu 4.18 ± 0.43, Fe 223 ± 21, Rb 6.64 ± 0.48, Sr 4.67 ± 0.78, and Zn 89.0 ± 8.4. This work revealed that there is 
a significant tendency for an increase in Rb and Zn mass fraction in normal female thyroid from age 41 years to the nine 
decade. Therefore, a goitrogenic and carcinogenic effect of excessive Rb and Zn level in the thyroid of old females may be 
assumed.
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Introduction
The endocrine organs, including the thyroid gland, 

undergo important functional changes during aging and 
a prevalence of thyroid dysfunction is higher in the el-
derly as compared to the younger population [1,2]. Ad-
vancing age is known to influence the formation of ade-
nomatous goiter and thyroid cancer [3]. The prevalence 
of thyroid nodules is increased in the elderly, reaching a 
frequency of nearly 50% by the age of 65 [4]. Both preva-
lence and aggressiveness of thyroid cancer increase with 
age [2]. Women are affected by thyroid nodule and can-
cer two to five times more often than men [2-5].

Aging is a complex process involving biochemical 
and morphologic changes in single cells, in organs, and 
in the whole organism. One of the most generally accept-
ed explanations of how aging occurs at the molecular 
level is the oxidative stress hypothesis [6]. Reactive Ox-

ygen Species (ROS) are widely considered to be a causal 
factor not only in aging but in a number of pathological 
conditions, including carcinogenesis. Aging, considered 
as an impairment of body functions over time, caused 
by the accumulation of molecular damage in DNA, pro-
teins and lipids, is also characterized by an increase in 
intracellular oxidative stress due to the progressive de-
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crease of the intracellular ROS scavenging [7]. Oxidative 
damage to cellular macromolecules which induce can-
cer can also arise through overproduction of ROS and 
faulty antioxidant and/or DNA repair mechanisms [8]. 
Overproduction of ROS is associated with inflammation, 
radiation, and some other factors, including overload of 
some trace elements, in both blood and certain tissues, 
or deficiency of other trace elements with antioxidant 
properties [9-15]. Studies have shown that the imbalance 
in the composition of trace elements may cause different 
types of pathology. The importance of appropriate levels 
of many trace elements is indisputable, due to their ben-
eficial roles when in specific concentration ranges, while 
on the other hand they can cause toxic effects with exces-
sively high or low concentrations [12].

In our previous studies [16-24] the high mass fraction 
of I and some other trace element were observed in intact 
human thyroid gland when compared with their levels 
in non-thyroid soft tissues of the human body. However, 
some questions about the age-dependence of trace element 
mass fraction in thyroid of adult and, particularly, elderly 
females still remain unanswered. One valuable way to elu-
cidate the situation is to compare the mass fractions of trace 
elements in young adult (the control group) with those in 
older adult and geriatric thyroid. The findings of the excess 
or deficiency of trace element contents in thyroid and the 
perturbations of their relative proportions in glands of adult 
and elderly females, may give an indication of their role in 
a higher prevalence of thyroid dysfunction in the elderly.

The reliable data on trace element mass fractions in nor-
mal geriatric thyroid is apparently extremely limited. There 
are many studies regarding trace element content in human 
thyroid, using chemical techniques and instrumental meth-
ods [25-30]. However, the majority of these data are based 
on measurements of processed tissue and in many studies 
tissue samples are shed before analysis. In other cases, thy-
roid samples are treated with solvents (distilled water, etha-
nol etc) and then are dried at a high temperature for many 
hours. There is evidence that certain quantities of trace ele-
ments are lost as a result of such treatment [31-33]. More-
over, only a few of these studies employed quality control 
using Certified/Standard Reference Materials (CRM/SRM) 
for determination of the trace element mass fractions.

This work had three aims. The primary purpose of this 
study was to determine reliable values for the Bromine (Br), 
Copper (Cu), Iron (Fe), Rubidium (Rb), Strontium (Sr), 
and Zinc (Zn) mass fractions in the normal (intact) thyroid 
of subjects ranging from children to elderly females using 
109 Cd radionuclide-induced energy-dispersive X-ray flu-
orescence analysis (109 Cd EDXRF). The second aim was 
to compare the Br, Cu, Fe, Rb, Sr, and Zn mass fractions 
in thyroid gland of age group 2 (adults and elderly persons 
aged 41 to 87 years), with those of group 1 (from 3.5 to 40 

years), and the final aim was to estimate the inter-correla-
tions of trace elements in normal thyroid of females. All 
studies were approved by the Ethical Committee of the 
Medical Radiological Research Center.

Materials and Methods
Samples of the human thyroid were obtained from 

randomly selected autopsy specimens of 33 females (Eu-
ropean-Caucasian) aged 3.5 to 87 years. All the deceased 
were citizens of Obninsk and had undergone routine 
autopsy at the Forensic Medicine Department of City 
Hospital, Obninsk. Age ranges for subjects were divided 
into two age groups, with group 1, 3.5-40 years (30.9 ± 
3.1 years, M ± SEM, n = 11) and group 2, 41-87 years 
(66.3 ± 2.7 years, M ± SEM, n = 22). These groups were 
selected to reflect the condition of thyroid tissue in the 
children, teenagers, young adults and first period of adult 
life (group 1) and in the second period of adult life as 
well as in old age (group 2). The available clinical data 
were reviewed for each subject. None of the subjects had 
a history of an intersex condition, endocrine disorder, or 
other chronic disease that could affect the normal devel-
opment of the thyroid. None of the subjects were receiv-
ing medications or used any supplements known to af-
fect thyroid trace element contents. The typical causes of 
sudden death of most of these subjects included trauma 
or suicide and also acute illness (cardiac insufficiency, 
stroke, embolism of pulmonary artery, alcohol poison-
ing). All right lobes of thyroid glands were divided into 
two portions using a titanium scalpel [34]. One tissue 
portion was reviewed by an anatomical pathologist while 
the other was used for the trace element content determi-
nation. A histological examination was used to control 
the age norm conformity as well as the unavailability of 
microadenomatosis and latent cancer.

After the samples intended for chemical element anal-
ysis were weighed, they were transferred to -20 °C and 
stored until the day of transportation in the Medical Ra-
diological Research Center, Obninsk, where all samples 
were freeze-dried and homogenized [35]. The pounded 
sample weighing about 8 mg was applied to the piece of 
Scotch tape serving as an adhesive fixing backing [36,37].

To determine the contents of the elements by com-
parison with a known standard, aliquots of commercial, 
chemically pure compounds were used [38]. The micro 
liter standards were placed on disks made of thin, ash-
free filter papers fixed on the Scotch tape pieces and dried 
in a vacuum. Ten subsamples of the Certified Reference 
Material (CRM) IAEA H-4 (animal muscle) weighing 
about 8 mg were analyzed to estimate the precision and 
accuracy of results. The CRM IAEA H-4 subsamples 
were prepared in the same way as the samples of dry ho-
mogenized thyroid tissue.
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The facility for EDXRF included an annular 109 Cd 
source with an activity of 2.56 GBq, Si(Li) detector and 
portable multichannel analyzer combined with a PC. Its 
resolution was 270 eV at the 5.9 keV line of 55 Fe-source. 
The duration of the Br, Cu, Fe, Rb, Sr, and Zn measure-
ments was 60 min. The intensity of Kα-line of Br, Cu, Fe, 
Rb, Sr, and Zn for samples and standards was estimated 
on calculation basis of the total area of the correspond-
ing photo peak in the spectra. The trace element content 
was calculated by the relative way of comparing between 
intensities of Kα-lines for samples and standards. De-
tails of the sample preparation, the facility and method 
of analysis were presented in our previous publication 
[36,37].

All thyroid samples were prepared in duplicate and 

mean values of trace element contents were used in final 
calculation. Using Microsoft Office Excel, a summary of 
the statistics, including, arithmetic mean, and standard 
deviation, standard error of mean, minimum and max-
imum values, median, percentiles with 0.025 and 0.975 
levels was calculated for trace element contents. The reli-
ability of difference in the results between two age groups 
was evaluated by the parametric Student’s t-test and 
non-parametric Wilcoxon-Mann-Whitney U-test. For 
the construction of “age-trace element mass fraction” 
diagrams and the estimation of the Pearson correlation 
coefficient between age and trace element mass fraction 
as well as between different trace elements the Microsoft 
Office Excel programs were also used.

Results
Table 1 depicts our data for 5 trace elements in ten 

sub-samples of CRM IAEA H-4 (animal muscle) and the 
certified values of this material.

Table 2 represents certain statistical parameters 
(arithmetic mean, standard deviation, standard error of 
mean, minimal and maximal values, median, percentiles 
with 0.025 and 0.975 levels) of the Br, Cu, Fe, Rb, Sr, and 
Zn mass fractions in intact (normal) thyroid of females.

The comparison of our results with published data for 
the Br, Cu, Fe, Rb, Sr, and Zn contents in the human thy-
roid is shown in Table 3. To estimate the effect of age on 
the trace element contents we examined two age groups, 
described above (Table 4).

Table 1: EDXRF data Br, Fe, Rb, Sr, and Zn contents in the 
IAEA H-4 (animal muscle) reference material compared to 
certified values (mg/kg, dry mass basis).

Element Certified values This work results
  Mean 95% 

confidence 
interval

Type Mean ± SD

Br 4.1 3.5-4.7 C 5.0 ± 1.2
Cu 4 3.6-4.3 C 3.9 ± 1.1
Fe 49 47-51 С 48 ± 9
Rb 18 17-20 C 22 ± 4
Sr 0.1 - N < 1
Zn 86 83-90 C 90 ± 5

Mean: Arithmetical mean; SD: Standard Deviation; C: Certified 
values; N: Non-certified values.

Table 2: Some statistical parameters of Br, Cu, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in intact thyroid of 
female. 

Gender Element Mean SD SEM Min Max Median P 0.025 P 0.975
Females Br 20.4 13.4 2.6 1.4 54.1 16.3 4.52 52.2
n = 33 Cu 4.18 1.72 0.43 0.5 6.5 4.05 1.18 6.5
  Fe 223 104 21 84 512 191 87.6 442
  Rb 6.64 2.47 0.48 2.2 12.8 6.38 3.08 11.7
  Sr 4.67 3.11 0.78 0.65 10.9 4.4 0.82 10.8
  Zn 89 43 8.4 6.1 166 88.1 6.16 156

M: Arithmetic mean; SD: Standard Deviation; SEM: Standard Error of Mean; Min: Minimum value; Max: Maximum value; P 0.025: 
Percentile with 0.025 level; P 0.975: Percentile with 0.975 level.

Table 3: Median, minimum and maximum value of means Br, Cu, Fe, Rb, Sr, and Zn contents in normal thyroid according to data 
from the literature in comparison with our results (mg/kg, dry mass basis).

Element  Published data [Reference] This work
Median of means (n)* Minimum of means 

M or M ± SD, (n)**

Maximum of means 

M or M ± SD, (n)** 

M ± SD

Br 18.1 (11) 5.12 (44) [25] 284 ± 44 (14) [26] 20 ± 13
Cu 6.1 (57) 1.42 (120) [27] 220 ± 22 (10) [28] 4.2 ± 1.7
Fe 252 (21) 56 (120) [27] 2444 ± 700 (14) [26] 223 ± 104
Rb 12.3 (9) ≤ 0.85 (29) [29] 294 ± 191 (14) [26] 6.6 ± 2.5
Sr 0.73 (9) 0.55 ± 0.26 (21) [30] 46.8 ± 4.8 (4) [28] 4.7 ± 3.1
Zn 118 (51) 32 (120) [27] 820 ± 204 (14) [26] 89 ± 43

M: Arithmetic mean; SD: Standard Deviation; (n)*: Number of all references; (n) **: Number of samples.
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In addition, the Pearson correlation coefficient be-
tween age and trace element mass fraction was calculated 
(Table 5). Figure 1 shows the individual data sets for the 
Br, Cu, Fe, Rb, Sr, and Zn mass fraction in all samples of 
thyroid, and also lines of trend with age.

Table 4: Differences between mean values (M ± SEM) of Br, Cu, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in 
normal female thyroid of two Age Groups (AG).

Element  Female thyroid tissue Ratio
  AG1

3.5-40 years

n = 11

AG2

41-87 years

n = 22

t-test

p ≤

 

U-test

p

 

AG2 to AG1

 

Br 13.1 ± 2.5 24.7 ± 3.5 0.0112 ≤ 0.01 1.89

Cu 4.01 ± 0.60 4.45 ± 0.61 0.616 > 0.05 1.11

Fe 172 ± 26 263 ± 27 0.0240 ≤ 0.01 1.53

Rb 5.30 ± 0.55 7.62 ± 0.64 0.0112 ≤ 0.01 1.44

Sr 5.29 ± 1.12 3.63 ± 0.86 0.262 > 0.05 0.69

Zn 65.6 ± 12.7 106.2 ± 9.3 0.0176 ≤ 0.01 1.62

M: Arithmetic mean; SEM: Standard Error of Mean; t-test: Student’s t-test; U-test: Wilcoxon-Mann-Whitney U-test; Statistically 
significant values are in bold.

Table 5: Correlations between age and chemical element 
mass fractions in the intact thyroid of female (r-coefficient of 
correlation).

Element Br Cu Fe Rb Sr Zn
Age 0.246 0.184 0.27 0.393a -0.095 0.670c

Statistically significant values: ap ≤ 0.05; cp ≤ 0.001.

         

Figure 1: Data sets of individual Br, Cu, Fe, Rb, Sr, and Zn mass fraction values in intact thyroid of females and their 
trend lines. 
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Age-dependence of Br and Fe mass fractions found 
using the comparison between results for two age groups 
was not confirmed when the Pearson correlation coeffi-
cient between age and mass fractions of these elements was 
calculated (Table 5). Thus, the questions about the Br and 
Fe mass fraction dependence on age stay open and need a 
similarly future study with larger sample size. No published 
data referring to age-related changes of Br, Cu, Fe, Rb, Sr, 
and Zn mass fractions in female thyroid was found.

A significant direct correlation between the Zn and Rb 
mass fractions (p ± 0.01, r = 0.48) and an inverse correla-
tion between Fe and Sr mass fractions (p ± 0.05, r = 0.35) 
was seen in female thyroid. The interpretation of observed 
correlations requires further study for a more complete un-
derstanding. No correlation was demonstrated between any 
other chemical elements (Table 5). No published data refer-
ring to inter-correlations of Br, Cu, Fe, Rb, Sr, and Zn mass 
fractions in thyroid of females was found.

An age-related increase and excess in Rb and Zn mass 
fractions in thyroid tissue may contribute to harmful ef-
fects on the gland. There are good reasons for such spec-
ulations since many reviews and numerous papers raise 
the concern about toxicity and tumorigenesis of the met-
als [10,11,42-74]. Each of the metals is distinct in its pri-
mary mode of action. Moreover, there are several forms 
of synergistic action of the metals as a part of intracellu-
lar metabolism, during which several reactive intermedi-
ates and byproducts are created [42,43,48]. These reac-
tive species are capable of potent and surprisingly selec-
tive activation of stress-signaling pathways, inhibition of 
DNA metabolism, repair, and formation of DNA cross 
links, which are known to contribute to the development 
of human cancers [43,75,76]. In addition to genetic dam-
age via both oxidative and nonoxidative (DNA adducts) 
mechanisms, metals can also cause significant changes in 
DNA methylation and histone modifications, leading to 
alterations in gene expression [44,46,75]. In vitro and an-
imal tumorigenic studies provided strong support for the 
idea that metals can also act as co-carcinogens in combi-
nation with nonmetal carcinogens [75].

All the deceased were citizens of Obninsk. Obninsk 
is the small nonindustrial city not far from Moscow in 
unpolluted area. None of those who died a sudden death 
had suffered from any systematic or chronic disorders 
before. The normal state of thyroid was confirmed by 
morphological study. Thus, our data for Br, Cu, Fe, Rb, 
Sr, and Zn mass fractions in intact thyroid may serve as 
indicative normal values for females of urban population 
of the Russian Central European region.

Conclusion
The 109 Cd radionuclide-induced energy-dispersive 

X-ray fluorescence analysis is a useful analytical tool for 

The data of inter-correlation calculations (values of 
r-coefficient of correlation) including all trace elements 
identified by us are presented in Table 6.

Discussion
A set of existing international CRM prepared from 

the soft tissues of humans and animals is extremely 
limited. As is was previously discussed [36] 97% of the 
self-absorption in the dry sample of human tissue is due 
to the content of bulk elements (C, N, O, P, S) and main 
electrolytes (Ca, Cl, Na). The content of these elements 
and the mass density of muscle and thyroid in humans 
are virtually identical [39]. Accordingly, the use of CRM 
IAEA H-4 as a CRM for the analysis of samples of thyroid 
tissue can be seen as quite acceptable. Good agreement of 
the Br, Cu, Fe, Rb, Sr, and Zn contents analyzed by EDX-
RF with the certified data of CRM IAEA H-4 (Table 1) 
indicates an acceptable accuracy of the results obtained 
in the study of trace elements of the thyroid presented in 
Table 2, Table 3, Table 4 and Table 5.

The obtained means for Br, Cu, Fe, Rb, Sr, and Zn 
mass fraction, as shown in Table 3, agree well with the 
medians of mean values cited by other researches for the 
human thyroid, including samples received from persons 
who died from different non-thyroid diseases [24-30]. A 
number of values for chemical element mass fractions 
were not expressed on a dry mass basis by the authors of 
the cited references. However, we calculated these values 
using published data for water (75%) [40] and ash (4.16% 
on dry mass basis) [41] contents in thyroid of adults.

A strongly pronounced tendency of age-related in-
crease in Br mass fraction was observed in thyroid (Table 
4). In second group of females with mean age 66.3 years 
the mean Br mass fraction in thyroids was almost 2 times 
higher than in thyroids of the first age group (mean age 
30.9 years). A modest tendency of age-related increase in 
Fe, Rb, and Zn mass fractions was also observed in thy-
roid (Table 4). The Fe, Rb, and Zn mass fraction growth 
in thyroid tissue for ages between 30.9 (age group 1) and 
66.3 (age group 2) years averaged 53%, 44%, and 62%, 
respectively. There were no statistically significant differ-
ences between the Cu and Sr mass fractions within dif-
ferent age-groups.

Table 6: Inter correlations of the chemical element mass fractions 
in the intact thyroid of female (r-coefficient of correlation).

Element Br Cu Fe Rb Sr Zn
Br 1.00 0.173 0.255 0.062 -0.200 0.023
Cu 0.173 1.00 0.048 0.009 0.249 0.024
Fe 0.255 0.048 1.00 0.185 -0.349a 0.213
Rb 0.062 0.009 0.185 1.00 -0.116 0.481b

Sr -0.200 0.249 -0.349a -0.116 1.00 -0.001
Zn 0.023 0.024 0.213 0.481b -0.001 1.00
Statistically significant values: ap ≤ 0.05; bp ≤ 0.01.
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the non-destructive determination of trace element con-
tent in the thyroid tissue samples. This method allows 
determine means for Br, Cu, Fe, Rb, Sr, and Zn (6 trace 
elements).

Our data reveal that there is strongly pronounced 
tendency of increase in Rb and Zn mass fraction in the 
normal thyroid of female during a lifespan. Therefore, a 
goitrogenic and tumorogenic effect of excessive Rb and 
Zn level in the thyroid of old females may be assumed.
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