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Introduction
Due to the enormous industrial and engineering 

applications of the flow of Newtonian and Non-Newtonian 
fluids many authors devoted efforts to such studies, especially 
in the last few decades. The problem of our concern that is 
the boundary layer flow over a moving cylinder has many 
industrial applications such as plastic and metallurgy industries 
as well as wire drawings. Sakiadis [1] examined the behaviour 
of boundary layer flow on a moving continuous surface. Rotte 
and Beek [2] constructed an approximate solution to the case 
of cooling or heating a continuously moving cylinder. The 
effects of mass transfer and thermal radiation on the flow of 
a viscous incompressible fluid past a moving vertical cylinder 
was analyzed by Ganesan and loganathan [3]. Abo-Eldahab 
and Salem [4] have recently investigated the problem of flow 
past a moving cylinder while considering the heat transfer of 
non-Newtonian power-law fluid with diffusion and chemical 
reaction. The concept of Magnetohydrodynamic (MHD) 
arises when we consider the case of fluid flow in electrically 
conducting fluids whenever magnetic properties affect fluid 
flow characteristics. A current is induced upon a magnetic 
field is incident in an electrically conducting fluid. There are 
enormous industrial applications of MHD in technology such 
as the industry of Petroleum, plasma studies, designs of 
MHD power generator, and the design of nuclear reactors. 
The steady flow of an electrically conducting incompressible 
fluid past a semi-infinite moving vertical cylinder in the 
presence of a transverse magnetic field is investigated by 

Amkadni and Azzouzi [5]. Elbashbesh, et al., [6] presented 
the study of boundary layer flow over a horizontal stretching 
cylinder embedded in a porous medium. The study included 
the effects of thermal radiation, heat transfer, and suction/
injection. Abdul Rehman, et al., [7] gave an analytic solution 
of the flow of a micropolar fluid past over a moving cylinder, 
in their study they took into consideration axisymmetric 
stagnation flow. A good view of the electrically conducting 
boundary layer flow of incompressible viscoelastic nanofluid 
that flows due to a moving linearly stretching surface can be 
found in the work of Haroon, et al., [8]. The references [9-
15] give a good review for the recent studies of the boundary 
layer flow over a cylinder. In this paper, we study the problem 
of heat and mass transfer and MHD flow over a cylinder that 
moving vertically with nonlinear velocity under the action of a 
uniform magnetic field, in the presence of nonlinear thermal 
radiation. An analytic solution will be found for some special 
cases and numerical solution will be reached and the results 
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will show the effects of different parameters considered here on the fluid velocity and fluid temperature.

Mathematical Model of the Problem
The study assumes an incompressible steady laminar flow over a semi-infinite cylinder of radius R that is moving nonlinearly. 

The coordinates are designed such that x is measured along the cylinder axis where r intersects with x axis at the origin 
and refers to the radial coordinate that is normal to the cylinder axis. The fluid properties are considered to be constant. A 
transverse magnetic field is applied and assumed to be uniform with strength B0 and the external velocity is considered as ue(x) 
= u∞(x/l)n, u∞ > 0. Such assumptions lead to the governing equations: 
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along with the boundary conditions:
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Where u and v represent the velocity components along the x and r directions respectively, ν stands for the kinematic 
viscosity, ρ is the density of the fluid, σ is the fluid electrical conductivity, l is taken as the characteristic length, B0 is the 

magnetic field intensity, α is the thermal diffusivity, κ is the thermal conductivity, and 
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 is the radiation heat 

flux in the radial direction, σ* is the Stefan-Boltzmann constant and k* is the Rosseland radiation absorptivity.

A stream function ψ is defined as:
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Where f is the dimensionless stream function and η is the dimensionless similarity variable. Defining the dimensionless 
temperature as:
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The governing equations and boundary conditions thus take the form:
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To solve the system (9)-(11) numerically we transform it into a system of first order ordinary differential equations as 
follows: y1(η) = f (η), y2(η) = f ′(η), y3(η) = f ′′(η), y4(η) = θ(η), y5(η) = θ′(η) to get the system

1 2y y′ =                     (2.12)

2
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subject to the initial conditions:

1 2 3 4 5(0) 0, (0) , (0) s, y (0) 1, (0)y y a y y u= = = = =                 (2.16)

The numerical values of the parameters are chosen in a suitable way. The values of s and u are priori unknown and are 
determined as a part of the solution. While the parameters numerical values are assigned according to the problem physics.

Method of Solutions
The mathematical model of the problem is solved numerically using MATHEMATICA through defining a function F [s_,u_]:= 

NDSolve [12-17]. The numerical values of s and u are determined through solving the equations y2(ηmax) = 1,y4(ηmax) = 0. A 
reasonable start value is assigned to ηmax and hence increased till we nd ηmax for which the difference between two successive 
values of s and those of u are less than 107. Once (ηmax) s and u are determined, the problem can be solved easily as an initial 
value problem using the Mathematica function NDSolve. See references [15] and [16]. To ensure the validity of the numerical 
method used in this work, consider equation (9) in case of n = 1.
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The exact solution given in ref [16] is:
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Here we give a comparison between the numerical solutions of equations (18) and (19) using the numerical method 
presented in this work and the exact solutions given by equation (20) for some special cases. Such comparison is elucidated in 
Table 1 which presents a comparison of f ′′(0) for K = 0.3 and ϵ = 1. Column 4 of Table 1 gives the numerical calculated values of 
|f′′(0) − 1|. Exact values should be zeroes as ηmax → ∞. Results shown in Table 1 assure the validity of the numerical method 
presented in this work.

Results and Discussions
In this section, Solutions of the problem is given for different values of the parameters. We study the variance of the 

fluid velocity f′(η) and the temperature of the fluid θ(η) with the similarity variable η for different reasonable values of the 

Table 1: Values of f ′′(0) where K = 0.3, ϵ = 1.

a Exact Sol. 

ref [16]

Num. Sol. Error

|f ′′(0) - 1|

1.1 -1/3 -0.3333333 2.2722 × 10−12

1.3 -1 -1.0000000 1.529 × 10−10

1.5 -5/3 -1.6666667 4.240 × 10−13

2 -10/3 -3.3333333 7.450 × 10−12
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parameters governing the fluid motion. Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 exhibits how the fluid velocity varies 
with the similarity variable η. The velocity of the fluid changes inversely with η till the velocity becomes one which refers to 

the case of ambient fluid. Figure 1 shows the fluid velocity is affected by changing the parameter 
R
l

∈ = . The fluid velocity 

decreases as ϵ increases. In fact the increase of 
R
l

∈ =  results in decreasing the cylinder surface area. Shrinking the surface 
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Figure 1: Variation of the fluid velocity f ′(η) with the parameter ϵ, where K = 0.2, a = 1.2, n = 0.3, θw =  1.1, M = 0.4, Pr = 7.6, 
Rd = 1, C = 2.
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Figure 2: Variation of the fluid velocity f ′(η) with the parameter n, where K = 0.2, a = 1.2, ϵ = 1, θw =  2, M = 1, Pr = 7.6, Rd = 1.2, C = 2.
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Figure 3: Variation of the fluid velocity f ′(η) with the parameter a, where K = 0.2, n = 0.3, ϵ = 1, θw =  2, M = 1, Pr = 7.6, Rd = 1.2, C = 2.
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area of the cylinder evolves to the increase of the space provided to the free stream velocity which enhances the tendency 
of the fluid velocity to get the value of the free stream velocity. Figure 2 elucidate the effect of the parameter n on the fluid 
velocity. The increase of n results in slowing the fluid. Such inverse relation can be understood through investigating the values 
of f′′(0) for different values of n which is shown in Table 2 proving that f′′(0) decreases with the increase of n which implies 
the effect of n on the fluid velocity. The fact that increasing the initial velocity of the fluid gives rise to accelerating the fluid is 
ensured in Figure 3. The value of -f′′(0) and consequently the skin friction coefficient increases as the magnetic parameter M 
increases as shown in Table 2. Such direct relation enhances the slowing of the fluid as noticed in Figure 4. Figure 5 shows that 
the fluid velocity decreases with the increase of the value of the parameter K. The justification of this behaviour is that -f′′(0) 
increases with the increase of K as shown in Table 2. The variations of the fluid temperature similarity variable θ(η) that is the 
difference between the temperature of the fluid and the ambient temperature with η are elucidated in Figures 6, Figure 7, 
Figure 8, Figure 9, Figure 10, Figure 11, Figure 12. The value of θ(η) decreases as η increases damping to zero which is already 
expected since as increasing η the fluid temperature gets closer to the ambient temperature value. Figure 6 elucidates the fact 
that as the initial velocity increases the fluid velocity increases also and consequently the cooling rate evolves which gives rise 
to decreasing the fluid temperature θ(η). The effect of the variation of the parameter n on the fluid temperature is elucidated 
in Figure 7. Increasing the value of n results in a decrease of the fluid temperature θ(η) since the increase of n implies an 
increase of the surface heat ux -θ′(0) as exhibited in Table 2. Figure 8 exhibits the variation of fluid temperature with the 

parameter ϵ. The inverse relation between θ and 
R
l

∈=  is a result of the fact that as the cylinder radius increases the cylinder 

surface area increases which consequently increases the value of -θ′(0) and so the fluid temperature decreases. The variation 
of the Prndtle number has considerable effect on the fluid temperature as shown in Figure 9. Considering the definition of the 
Prndtle number, one realizes that as Pr increases the fluid thermal conductivity increases which in turn results in increasing the 
surface heat flux (Table 2) that implies a decrease of the fluid temperature. The thermal radiation parameter affects the fluid 
temperature as demonstrated in Figure 10. In fact as Rd increases the Rossland radiation absorptivity k* decreases and hence 
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Figure 4: Variation of the fluid velocity f ′(η) with the parameter M , where K = 0.2, n = 0.3, ϵ = 1, θw =  2, a = 1.2, Pr = 7.6, Rd = 1.2, C = 2.
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Figure 5: Variation of the fluid velocity f ′(η) with the parameter K, where M = 0.4, n = 0.3, ϵ = 1, θw =  1.1, Pr = 7.6, Rd = 1, C = 2.
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the radiation heat flux 
* 4

*

4
3r

Tq
k r
σ− ∂

=
∂

 increases which leads to an increase of rate of the radiative heat transferred to the 

fluid which in turn elevates the fluid temperature. From Table 2 one can notice that as the parameter value w
w

T
T

θ =
− ∞
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Figure 6: Variation of the velocity θ(η) with the parameter a, where K = 0.2, n = 0.3, ϵ = 1, θw = 2, M = 1, Pr = 7.6, Rd = 1.2, C = 2.

         

n=0.3,0.7,1,2

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0

ΗΘ

Figure 7: Variation of the fluid velocity θ(η) with the parameter n, where K = 0.2, a = 1.2, ϵ = 1, θw =  2, M = 1, Pr = 7.6, Rd = 1.2, C = 2.
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Figure 8: Variation of the fluid velocity θ(η) with the parameter ϵ, where K = 0.2, a = 1.2, n = 0.3, θw =  1.1, M = 0.4, Pr = 7.6, Rd = 1.2, C = 2.
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increases the wall temperature increases also which gives rise to the enhancement of the fluid temperature as elucidated in 
Figure 11. The effect of the parameter K on the fluid temperature is shown in Figure 12. The value of -θ′(0) decreases with the 
increase of K as elucidated in Table 2. Such variation enforces the fluid temperature to decrease.
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Figure 9: Variation of the fluid velocity θ(η) with the parameter Pr, where K = 0.2, a = 1.2, n = 0.3, ϵ =  1, θw = 2, M = 1, Pr = 7.6, Rd = 1.2, 
C = 2.
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Figure 10: Variation of the fluid velocity θ(η) with the parameter Rd, where K = 0.2, a = 1.2, n = 0.3, ϵ =  1, θw = 2, M = 1, Pr = 7.6, C = 2.
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Figure 11: Variation of the fluid velocity θ(η) with the parameter θw, where K = 0.2, a = 1.2, n = 0.3, ϵ = 1, M = 1, Pr = 7.6, Rd = 1, C = 2.



Citation: Emam TG (2023) Effect of Nonlinear Thermal Radiation on MHD Flow over a Vertical Cylinder Moving with Nonlinear Velocity. J 
Fluid Dyn 4(1):72-80

Emam. J Fluid Dyn 2023, 4(1):72-80 Open Access |  Page 79 |

         

Θ(Η) 

 
 
 
 
 
 
 
 

Η 

 

1.0 
 
 
 
0.8 
 
 
 
0.6 
 
 
 
0.4 K=0.2,0.4,0.6,0.8 

0.2 

1 2 3 4 5 

Figure 12: Variation of the fluid velocity θ(η) with the parameter K, where a = 1.2, n = 0.3, ϵ = 1, θw =  1.1, M = 0.4, Pr = 7.6, Rd = 1, C = 2.

Table 2: Values of −f ′′(0) and −θ′(0) for various values of the considered parameters.

n K ϵ M Pr Rd θw C A −f ′′(0) −θ′(0)

0.5

0.4 1.0 1.0 7.6 1.2 2.0 2.0 1.2

0.294076 0.65995

0.7 0.338875 0.717159

0.5 0.405774 0.809287

0.5

0.2

1.0 1.0 7.6 1.2 2.0 2.0 1.2

0.284732 0.852847

0.4 0.294076 0.655995

0.6 0.303192 0.570127

0.5 0.4

1.0

1.0 7.6 1.2 2.0 2.0 1.2

0.294076 0.655995

1.5 0.333143 0.760530

2.0 0.367911 0.849012

0.5 0.4 1.0

0.4

7.6 1.2 2.0 2.0 1.2

0.259431 0.627275

0.7 0.277313 0.656602

1.0 0.294076 0.655995

0.5 0.4 1.0 1.0

0.7

1.2 2.0 2.0 1.2

0.294076 0.342671

4.0 0.294076 0.528014

7.6 0.294076 0.655995

0.5 0.4 1.0 1.0 7.6

1.2

2.0 2.0 1.2

0.294076 0.655995

1.7 0.294076 0.578398

2.0 0.294076 0.546589

0.5 0.4 1.0 1.0 7.6 1.2

1.4

2.0 1.2

0.294076 1.093853

1.7 0.294076 0.829356

2.0 0.294076 0.655995

0.5 0.4 1.0 1.0 7.6 1.2 2.0

2.0

1.2

0.294076 0.655995

3.0 0.294076 0.504565

4.0 0.294076 0.420907

0.5 0.4 1.0 1.0 7.6 1.2 2.0 2.0

1.2 0.294076 0.655995

1.5 0.758729 0.691506

2.0 1.592643 0.747028
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Conclusions
A study of nonlinear radiative flow over a vertical cylinder that moves with nonlinear velocity is given. The problem is 

formulated using a suitable mathematical model including all parameters influencing the fluid velocity and temperature. The 
model is then solved numerically and the numerical results in some special case are compared with exact solutions to assure the 
validity of the numerical method given in this work. The effects of the parameters are investigated and interpreted physically.
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