Table 3: Quantum Mechanics (QM) complexation Gibbs free energy (∆∆GQMcom) and its components for the training set.

Training seta ∆∆HQMb ∆∆Gcavc ∆∆Geld ∆∆Gdispe ∆∆Grepf ∆∆Gcompg I C 50 exp h
(kcal/mol) (µM)
AVSH1 0 0 0 0 0 0 16.5
AVSH2 1.88 0.59 6.38 -2 0.23 2.7 22.4
AVSH3 -0.82 3.81 -6.81 -9 0.88 3.9 9.22
AVSH4 -0.87 1.87 -5.32 -0.19 0.08 1.1 4.95
AVSH5 1.49 -0.02 -10.89 -6.25 0.43 1.9 21.6
AVSH6 -8.08 0.85 4.57 -0.67 0.07 -7.2 0.35

aFor the chemical structures of the training set of inhibitors see Table 1; b∆∆HQM is the relative enthalpic contribution to the Gibbs free energy change related to Enzyme-Inhibitor (E:I) complex formation derived by Quantum Mechanics (QM): ΔΔ H QM   [ E QM  { E:I X } E QM { I X } ][ E { E:I ref } QM E QM { I ref } ], Iref is the reference inhibitor AVSH1; c∆∆GQM_solv is the relative solvation Gibbs free energy contribution to the Gibbs free energy change of E:I complex formation obtained by Polarizable Continuum Model (PCM) approach: ∆∆GQM_solv = ∆∆Gcavc+ ∆∆Geld + ∆∆Gdispe + ∆∆Grepf = [GQM_solv{E:Ix} - GQM_solv{Ix}] - [GQM_solv{E:Iref} - GQM_solv{Iref}]; g ΔΔ G QMcom ΔΔ H QM +ΔΔ G QM_solv is the relative Gibbs free energy change related to E:Ix complex formation; h IC 50 exp is the experimental half-maximal inhibitory concentration of FP2 inhibition obtained from reference [13].