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Abstract
Advanced Glycation End Products (AGEs), together with its receptor (RAGE) are known to play a predominant role in the 
onset of diabetic micro- and macrovascular diseases. Therefore, therapeutic interventions which can target AGE-RAGE axis are 
of great interest in diabetic therapy. Animal studies demonstrated promising results for most of the AGE-RAGE inhibitors but 
their actual clinical values are not fully elaborated. Therefore, this review aimed to summarize clinical findings of well-known 
AGE-RAGE antagonists including AGE cross-link breaker (alagebrium), dicarbonyl scavengers (aminoguanidine), antidiabetic 
drugs (metformin, thiazolidinediones, meglitinides, sulfonylureas and dipeptidyl peptidase 4 inhibitor), lipid-lowering drugs 
(statins), antihypertensive agents (angiotensin receptor blockers, angiotensin converting enzyme inhibitors and calcium channel 
blockers), vitamin B1 (thiamine and benfotiamine) and B6 (pyridoxine and pyridoxamine) as well as other investigational 
pharmacotherapy. The inhibitory mechanism of the anti-AGE-RAGE agents are also discussed. To date, most of the therapeutic 
interventions targeting at AGE-RAGE axis produced conflicting clinical findings. Some of the most promising agents are 
metformin, thiazolidinediones and statins. It is postulated that the inhibition of AGE-RAGE axis may be more beneficial at the 
early stage of diabetes so as to delay the progression of the associated vascular complications. Future studies should aim to identify 
the subsets of diabetic patients whom will be truly benefited from AGE-RAGE inhibition.
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Introduction
Diabetes mellitus which is one of the most widespread 

chronic metabolic diseases is swiftly transforming into 
global health threat due to the ever-increasing prevalence 
of modern risks, namely high blood glucose, physical inac-
tivity, overweight and obesity [1]. In 2014, it was estimated 
that about 422 million adults were diabetic, approximately 
90% of which were Type 2 Diabetes Mellitus (T2DM) [2]. 
Diabetic vascular complications, notably the macrovascular 
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diseases like atherosclerosis and microvascular diseases like 
retinopathy, nephropathy and neuropathy are the major 
contributors of morbidity and mortality in diabetes. In this 
context, Advanced Glycation End Products (AGE) and the 
interaction with the Receptor for AGE (RAGE) has been 
long recognized to be one of the key pathological pathways 
driving the progression of diabetes and the associated vas-
cular complications.

AGEs are irreversibly generated from the non-enzymat-
ic glycation of reducing sugars to amino groups in proteins 
or lipids, followed by a series of rearrangements or oxida-
tion reactions [3]. This process, which is known as the Mail-
lard reaction, is concentration-dependent since the circulat-
ing AGE level is significantly higher in diabetic patients [4]. 
Along with the elevation of AGE, many reactive intermedi-
ates such as glyoxal, methylglyoxal and 3-deoxyglucosone 
which are collectively known as α-oxoaldehydes or dicar-
bonyls, are also increased [5]. These dicarbonyl compounds 
can be derived from polyol pathway [6], degradation of 
protein glycation intermediates [7] or lipid peroxidation 
and oxidative stress [8]. Under high carbonyl stress, these 
dicarbonyls act as the AGE precursors and promote the for-
mation and accumulation of AGEs [9].

The detrimental effects of AGEs have been summarized 
comprehensively in several reviews [10,11]. Two major 

mechanisms are implicated: (1) The formation of cross-
linked products between AGEs in basement membrane 
of Extracellular Matrix (ECM); and (2) Ligand binding of 
AGEs to RAGE which triggers downstream cellular sig-
naling. The former mechanism modifies the properties of 
structural proteins like collagen, vitronectin and laminin 
which subsequently, weakens the integrity of vascular struc-
ture and leads to vascular stiffening [12] and myocardial 
dysfunction [13]. The AGE-RAGE interaction, on the other 
hand, triggers the activation of various signaling cascades, 
resulting in functional changes in terms of proinflammato-
ry response, programmed cell death, migration and prolif-
eration [14]. AGE-mediated RAGE activation also triggers 
a positive feed forward loop, in which RAGE signaling ac-
tivates NF-κB which further upregulates RAGE expression 
[15]. This self-perpetuating cycle intensifies the pathologi-
cal progression of diabetic vascular diseases.

Considering the deleterious effects of AGEs, on-go-
ing investigations are being carried out to identify com-
pounds that can inhibit the AGE-RAGE axis. Some of 
these AGE-RAGE inhibitors were tested in human clin-
ical trials to examine their therapeutic effects on dia-
betes and diabetes-associated complications. Thus, the 
primary aim of this review was to outline the current 
clinical evidence of therapeutic drugs on AGE-RAGE 
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Figure 1: A summary of intra- and extracellular pathological effects associated to advanced glycation end products and its 
receptor which ultimately lead to the progression of micro- and macrovascular complications in diabetes mellitus.
AGE: Advanced Glycation End Products; AGE-LDL: AGE-Low-Density Lipoprotein; ECM: Extracellular Matrix; ICAM-1: Intercel-
lular Adhesion Molecule-1; IL-1α: Interleukin-1α; IL-6: Interleukin-6; NF-κB: Nuclear Factor κB; NO: Nitric Oxide; TNF-α: Tumor 
Necrosis Factor-α; VCAM-1: Vascular Cell Adhesion Molecule-1; VEGF: Vascular Endothelial Growth Factor.
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(MAPK), p21ras, Src kinase, JAK-STAT, protein kinase 
C and phosphatidylinositol-protein kinase B (PI3K-Akt) 
pathways [14]. These signaling cascades modify the cellu-
lar response to apoptosis, autophagy, proliferation, mo-
tility and inflammation. One of the key proinflammatory 
transcription factors, Nuclear Factor-Kappa B (NF-κB) 
is also activated. The activated transcription factor will 
translocate into the nucleus to upregulate the expres-
sion of various downstream target genes. In the endo-
thelial cells, RAGE-induced NF-κB activation promotes 
cell-cell and cell-ECM adhesion via the overexpression 
of Intercellular Adhesion Molecule-1 (ICAM-1) and 
Vascular Cell Adhesion Molecule-1 (VCAM-1) respec-
tively [30,31]. When coupled with NF-κB-dependent 
overexpression of Vascular Endothelial Growth Factor 
(VEGF) which facilitates ECM thickening, the increased 
vascular adhesiveness greatly enhances leucocyte reten-
tion, infiltration and activation [32]. RAGE activation 
also mediates proinflammatory response via the release 
of cytokines like interleukins and tumor necrosis factor 
α [33]. Such a RAGE- and NF-κB-induced proliferative 
and inflammatory state leads to substantial vascular re-
modeling and chronic vascular insult, both of which act 
as the key pathology to the onset of atherosclerosis and 
endothelial failure in diabetic microvascular complica-
tions [34-36].

RAGE activation also plays a role in vasoconstriction 
by stimulating the overexpression of a potent vasocon-
strictor, endothelin-1 [37]. Furthermore, AGE aggrega-
tion has been shown to impair the biosynthesis of nitric 
oxide which is a crucial vasodilator. The inhibitory effect 
on nitric oxide bioavailability is caused by transcription-
al suppression and direct inhibition of endothelial nitric 
oxide synthase [38,39]. The cumulative effect of reduced 
nitric oxide and elevated endothelin-1 impairs the blood 
perfusion considerably, resulting in a hypoxic state and 
progressive ischaemic injury to the peripheral tissues 
[40-42] (Figure 1).

Therapeutic Agents Targeting at AGE-RAGE Axis
AGE cross-link breaker and dicarbonyl scavenger

Some of the most extensively studied pharmacolog-
ical interventions acting on AGE-RAGE axis are dicar-
bonyl scavengers (aminoguanidine) and AGE cross-link 
breaker (alagebrium). The clinical efficacy of these com-
pounds are summarized in Table 1.

Aminoguanidine (or pimagedine) is an investigation-
al drug that inhibits AGE formation by scavenging AGE 
precursors. It has two crucial functional groups, namely 
a nucleophilic hydrazine and a guanidino groups, both 
of which facilitate irreversible interaction with dicarbo-
nyls, especially glyoxal, methyglyoxal and 3-deoxyglu-
cosone [43]. Such a scavenging effect of aminoguanidine 

axis intervention with a major focus on diabetes-related 
health conditions. The putative mechanisms of action of 
the experimental drugs on the glycation pathway are also 
discussed.

Pathological Roles of AGE-RAGE Axis in Dia-
betic Vascular Complications

As mentioned previously, AGE and RAGE can in-
duce both intra- and extracellular pathological changes 
which collectively, contribute to the development of en-
dothelial damage, vasculature modification, proathero-
genic and proinflammatory processes. Consequently, the 
cardiovascular function is tremendously jeopardized, re-
sulting in vascular complications commonly seen in di-
abetic patients. The intra- and extracellular pathogenesis 
of AGE-RAGE axis is illustrated in Figure 1.

Generally, the extracellular effects of AGE accumula-
tion are largely receptor-independent, but some of which 
can be aggravated by the activation of RAGE. Under 
physiological conditions, AGE accumulation is a normal 
aging process [16], but in diabetic patients, the process 
takes place at an accelerated pace. Non-enzymatic glyca-
tion can occur to virtually all proteins, lipids and nucleic 
acids, the last of which is less well-understood in diabe-
tes mellitus. However, recent studies do suggest potential 
implication of glycated DNA in diabetic patients [17,18].

On the other hand, the impacts of protein glycation 
is extensively studied. AGE formation on the serum al-
bumin can affect their drug binding capacity [19] and 
ability to induce platelet aggregation [20]. Furthermore, 
preliminary studies of glycated immunoglobulins re-
vealed significant conformational alteration and loss of 
antibody-antigen interaction [21,22]. AGE aggregation 
is more prominent in structural proteins due to their 
slow turnover rate. These proteins, namely collagen, vit-
ronectin and laminin, are responsible for the formation 
of basement membrane in the ECM. Increased AGE ac-
cumulation can modify the structural properties of the 
large matrix formed by these proteins via AGE-AGE in-
teraction, or cross-linking [23]. These cross-links on the 
structural proteins increase the area of ECM [24] and 
hinder protein-protein interaction [25,26] which sub-
sequently reduce their elasticity, leading to vascular and 
myocardial stiffening in diabetes and aging [27]. More-
over, AGE formation on Low-Density Lipoproteins 
(AGE-LDL) significantly impedes their clearance [28] 
and enhances their likelihood to be taken up by macro-
phages [29]. This promotes the formation of foam cells 
and atherosclerotic lesions, eliciting increased risk of 
atherosclerosis in diabetic patients.

Intracellularly, upon AGE-RAGE ligand binding, 
a series of signal transduction pathways are activated, 
among which are Mitogen-Activated Protein Kinase 
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Table 1: Clinical findings of the effectiveness of aminoguanidine and alagebrium on AGE-RAGE axis.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Aminoguanidine Double-blind 
RCT

T2DM, proteinuria (n = 599)
•	 Placebo (n = 194)
•	 50-300 mg 

aminoguanidine (n = 207)
•	 100-600 mg 

aminoguanidine (n = 198)

Planned to 
be 2 years

•	 Terminated early due to low 
benefit-to-risk ratio of the drug.

[47] 

Aminoguanidine Double-blind 
RCT

T1DM, nephropathy, 
retinopathy (n = 690)
•	 Placebo (n = 236)
•	 150 mg aminoguanidine 

(n = 229)
•	 300 mg aminoguanidine 

(n = 225)

2 to 4 years •	 No significant difference 
between groups in the progress 
of serum creatinine doubling.

•	 Aminoguanidine slowed 
down decrease in estimated 
glomerular filtration rate and 
reduced total urinary proteinuria 
compared to placebo.

[46] 

Alagebrium Single-arm 
study

Elderly, diastolic heart failure 
(n = 23)
•	 420 mg alagebrium

16 weeks •	 Alagebrium reduced left 
ventricle mass and improved 
diastolic filling without changing 
blood pressure, peak exercise 
oxygen consumption and aortic 
distensibility.

[55] 

Alagebrium Single-arm 
study

Systolic hypertension (n = 13)
•	 420 mg alagebrium

8 weeks •	 Alagebrium improved arterial 
stiffness and endothelial 
function.

[56] 

Alagebrium Double-blind 
RCT

Hypertension, vascular 
stiffening (n = 93)
•	 Placebo (n = 31)
•	 210 mg alagebrium 

(n = 62)

56 days •	 Alagebrium reduced pulse 
pressure and improved arterial 
compliance compared to 
placebo.

[50] 

Alagebrium Double-blind 
RCT

Heart failure (n = 102)
•	 Placebo (n = 52)
•	 400 mg alagebrium 

(n = 50)

36 weeks •	 Alagebrium did not result in 
beneficial effect in exercise 
tolerance, diastolic function, 
systolic function and AGE 
accumulation.

[52] 

Alagebrium Factorial 
design, RCT

Physically inactive, elderly 
(n = 48)
•	 Placebo and exercise 

(n = 12)
•	 Placebo without exercise 

(n = 12)
•	 200 mg alagebrium and 

exercise (n = 12)
•	 200 mg alagebrium 

without exercise (n = 12)

1 year •	 Alagebrium did not improve 
vascular function and arterial 
stiffness.

[53]

Alagebrium Factorial 
design, RCT

Physically inactive, elderly 
(n = 62)
•	 Placebo and exercise 
•	 Placebo without exercise 
•	 200 mg alagebrium and 

exercise 
•	 200 mg alagebrium 

without exercise 

1 year •	 Alagebrium alone improved left 
ventricle stiffness but did not 
affect left ventricle mass and 
end-diastolic volume.

[51] 

Alagebrium Factorial 
design, RCT

Physically inactive, elderly 
(n = 62)
•	 Placebo and exercise 
•	 Placebo without exercise 
•	 200 mg alagebrium and 

exercise 
•	 200 mg alagebrium 

without exercise

1 year •	 Alagebrium alone or in 
combination with exercise did 
not improve left ventricular 
function, stroke index and 
effective arterial elastance.

[54] 

AGE: Advanced Glycation End Product; RCT: Randomised Controlled Trial; T1DM: Type 1 Diabetes Mellitus; T2DM: Type 2 
Diabetes Mellitus.
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all cardiovascular fitness remained largely unaffected 
by alagebrium. It is not unusual given that diabetes- or 
ageing-related cardiovascular disease is a multifactorial 
disease. This also suggests that the clinical role of AGE 
cross-link breaker should be adjunctive rather than pri-
mary.

Unlike aminoguanidine, there is no serious adverse 
effect associated with alagebrium. Another AGE cross-
link breaker, TRC4186 which has undergone phase I 
clinical study, was also reported to be safe and well-tol-
erated in human subjects [58]. Unfortunately, like ami-
noguanidine, the development of alagebrium has been 
discontinued after the company incharge stopped their 
operation. Likewise, there is no further update about 
TRC4186 despite the completion of phase II clinical trial 
in diabetic patients with stable heart failure (Table 1).

Anti-hyperglycaemic medications
Many classes of antidiabetic drugs such as bigua-

nides, Thiazolidinediones (TZDs), meglitinides, sulfony-
lureas and Dipeptidyl Peptidase 4 (DPP4) inhibitor, have 
been tested clinically for their inhibitory effects on AGE-
RAGE axis (Table 2). All of them have demonstrated a 
promising AGE-lowering effect. This is plausible as the 
reduction of glucose level favors the reverse reaction of 
glycation and hence, lowering the formation and aggre-
gation of AGEs. However, it is postulated that some of 
these drugs may suppress the AGE-RAGE axis indepen-
dent of their glucose-lowering properties.

Considering the structural similarity to aminoguani-
dine, metformin is also thought to serve as a dicarbonyl 
scavenger apart from its insulin-sensitizing effect. In-
deed, metforrmin is capable of reducing methylglyoxal 
in vitro [59] and in T2DM patients [60]. The combined 
effect of the two bioactivities may contribute to the sig-
nificant decline in circulating AGE level [61,62]. Never-
theless, compared to other glucose-lowering drugs like 
pioglitazone and repaglinide, metformin did not perform 
better in reducing AGEs [63,64]. This implies that the 
glycaemic control plays a more predominant role than 
dicarbonyl scavenging in AGE-RAGE axis inhibition. 
Aside from AGE-lowering effect, treatment with met-
formin also restored antioxidant capacity of the serum, 
reduced proinflammatory biomarkers and enhanced 
nitric oxide level [63,64]. Hence, metformin may be an 
attractive candidate for further study about AGE-RAGE 
inhibition and diabetic vascular complications.

Another anti-diabetic agent which has been rigorous-
ly tested is TZD. Fundamentally, TZDs like pioglitazone 
and rosiglitazone are Peroxisome Proliferator Activated 
Receptor (PPAR) agonist, with the highest preference 
for PPARγ isoform [65]. Studies revealed that the acti-
vation of PPARγ effectively down regulates the RAGE 

has been demonstrated to rescue diabetic nephropathy 
in diabetic animal models via the reduction of albumin-
uria and renal vascular injury [44,45].

Nonetheless, a randomized controlled clinical trial 
(ACTION I) which involved 690 patients with Type 1 
Diabetes Mellitus (T1DM) failed to establish beneficial 
effects of aminoguanidine on diabetic nephropathy as 
there was no significant delay in serum creatinine dou-
bling time between treated and untreated individuals 
[46]. Aminoguanidine regimen did however, slow down 
the deterioration of glomerular filtration rate and reduce 
total urinary proteinuria [46]. Another similar trial, AC-
TION II, which was designed to study the effects of ami-
noguanidine on diabetic renal complications among the 
patients with type 2 diabetes mellitus, was subjected to 
early termination due to safety issues and low efficacy of 
the drug [47].

The use of aminoguanidine is associated side effects 
like autoantibody generation, anemia, flu-like symp-
toms and very rarely, crescentic glomerulonephritis [46]. 
These could be linked to other biological functions of 
aminoguanidine. Essentially, aside from being a dicar-
bonyl scavenger, aminoguanidine is also a potent in-
hibitor of inducible nitric oxide synthase and diamine 
oxidase as well as a strong scavenger for multiple metab-
olites including pyridoxal phosphate, pyruvate and glu-
cose [43,48]. Flu-like symptoms may be attributable to 
histamine intolerance caused by the inhibitory effect on 
diamine oxidase. On the other hand, since aminoguani-
dine is a hydrazine derivative, this may trigger the induc-
tion of autoimmunity which contributes to the onset of 
glomerulonephritis [49]. In light of these adverse effects, 
the clinical use of aminoguanidine may not be feasible. 
In fact, the development of aminoguanidine as a therapy 
for diabetic neuropathy has been halted due to the afore-
mentioned toxicity.

As for the AGE cross-link breaker, alagebrium, Ran-
domized Controlled Trials (RCTs) has yielded mixed 
results on its efficacy. Treatment with alagebrium (200-
210 mg) could reduce arterial and left ventricular stiff-
ness [50,51], but failed to confer beneficial effect on 
overall cardiovascular health [52-54]. Two smaller and 
single-arm studies showed that the therapeutic effects of 
alagebrium on cardiovascular function were more prom-
inent at much higher dosage (420 mg) [55,56]. Based on 
these findings, treatment with alagebrium seems to pro-
vide certain mechanical improvements to the heart and 
major blood vessels. This is linked to its selective AGE 
cross-links cleavage properties, which attenuates AGE 
accumulation and reduces existing AGE cross-links 
in the vascular wall and myocardium [57]. As a result, 
the reduction of AGE cross-links helps to restore vas-
cular and ventricular elasticity. Nevertheless, the over-
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Table 2: Clinical findings of the effectiveness of glucose-lowering medications on AGE-RAGE axis.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Metformin 
(Biguanides)

Observational T2DM (n = 57)

•	 Non-metformin (n = 27)

•	 500-2500 mg metformin 

(n = 30)

≥ 3 months •	 High-dose (1500-2500 mg) 
metformin reduced plasma 
methylglyoxal compared to 
low-dose (≤ 1000 mg) and non-
metformin treatment. 

•	 Detoxified methylglyoxal, D-lactate 
level increased with metformin 
treatment.

[60] 

Metformin RCT T2DM (n = 99)

•	 Lifestyle modification 

(n = 49)

•	 1000 mg metformin (n = 50)

3 months •	 Metformin reduced AOPP, AGE 
and increased FRAP.

•	 No difference in LCAT and PON.

[62] 

Metformin Double-blind 
RCT

T2DM (n = 208)

•	 Placebo (n = 98)

•	 850-2000 mg metformin 

(n = 110)

24 weeks •	 Metformin reduced ROS, AGEs and 
pentosidine, increased total thiol and 
NO levels, restored CRP, improved 
ATPase activity without affecting 
calcium and magnesium levels. 

[61] 

Metformin

Pioglitazone 
(TZD)

RCT T2DM (n = 129)

•	 No medication (n = 49)

•	 30 mg pioglitazone (n = 30)

•	 1000 mg metformin (n = 50)

3 months •	 Metformin increased FRAP.

•	 Pioglitazone significantly restored 
LCAT and LPL enzymatic activity.

•	 Both metformin and pioglitazone 
were equally effective at reducing 
AGE and AOPP.

[64] 

Metformin

Repaglinide 
(meglitinide)

Double-blind 
crossover 
study

T2DM (n = 96)

•	 6 mg repaglinide 

•	 2 g metformin 

4 months 
for each 
drug and 
1 month 
washout

•	 Metformin reduced pro-
inflammatory markers like TNF-α, 
plasminogen activator inhibitor-1 
antigen, tissue-type plasminogen 
activator antigen, von Willebrand 
factor, soluble intercellular 
adhesion molecule-1 and soluble 
E-selectin.

•	 Repaglinide reduced heart rate and 
Amadori products.

•	 Both drugs had similar effects 
on IL-6, fibrinogen, VCAM-1, 
asymmetric dimethylarginine, AGEs 
and glycaemic level.

[63] 

Pioglitazone

Rosiglitazone 
(TZDs)

RCT T2DM (n = 60)

•	 Placebo (n = 21)

•	 30 mg pioglitazone (n = 19)

•	 4 mg rosiglitazone (n = 20)

12 weeks •	 Pioglitazone increased sRAGE 
more significantly compared to 
other treatments.

[69] 

Rosiglitazone 
(TZD)

Glibenclamide/
Gliclazide 
(sulfonylurea)

Randomised, 
parallel group 
study

T2DM (n = 64)

•	 5 mg glibenclamide/80 mg 
gliclazide (n = 32)

•	 4 mg rosiglitazone 

(n = 32)

24 weeks •	 Rosiglitazone or sulfonylurea 
reduced HbA1c, fasting glucose 
and AGE.

•	 Only rosiglitazone increased 
sRAGE and esRAGE.

[68] 

Pioglitazone 
(TZD)

Glimepiride 
(sulfonylurea)

Randomised, 
parallel group 
study

T2DM (n = 57)

•	 15-30 mg pioglitazone 

(n = 27)

•	 0.5-2 mg glimepiride (n = 30)

24 weeks •	 Pioglitazone led to higher increase 
in circulating plasma esRAGE and 
sRAGE.

•	 Suppression of RAGE expression in 
mononuclear cells was more significant 
in pioglitazone-treated groups.

[75] 
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effectiveness on delaying the progression of diabetic mi-
cro- and macrovascular complications (Table 2).

Lipid-lowering drugs
Statins, notably atorvastatin, simvastatin, pravastatin 

and pitavastatin have been consistently found to inhibit 
AGE-RAGE axis. Briefly, HMG-CoA reductase inhibitor 
or so-called statin is one of the most commonly prescribed 
lipid-lowering medications for patients with hypercholes-
terolaemia due to its high efficiency to block conversion of 
HMG-CoA to mevalonic acid in cholesterol biosynthesis 
[76]. Recent trials (Table 3) ubiquitously reported a decline 
in circulating AGE level or elevation of sRAGE level follow-
ing statin treatment [77-81]. AGE formation and RAGE ex-
pression in atherosclerotic plaques were also suppressed by 
simvastatin regimen [82].

The AGE-lowering effect by statins seems to be in-
dependent of glycaemic control because the glucose 
level and glycated Haemoglobin (HbA1c) remained un-
changed by statins in the studies outlined in Table 3. It 
is hypothesized that statins may induce RAGE shedding 
to facilitate increased sRAGE and AGE disposal [83]. In-
deed, the results showed that statin stimulated proteolyt-
ic cleavage of membrane-bound RAGE by a disintegrin 
and metalloproteinase 10 (ADAM10) to yield sRAGE 
and this mechanism was proved to be strictly caused by 
cholesterol biosynthesis attenuation instead of isopre-
nylation inhibition [83]. Statin-induced RAGE shedding 
is not entirely a novel mechanism. Previous studies have 
pointed out that cellular cholesterol depletion can trigger 
ADAM10-facilitated shedding of interleukin-6 receptor 
[84], soluble amyloid precursor protein [85] and CD44 
[86]. Proteolytic cleavage of these membrane-bound 
proteins correlates the roles of cellular cholesterol to 
inflammatory response, Alzheimer’s disease prevention 
and suppression of tumor migration respectively. In this 
context, long term statin therapy may lead to cellular 
cholesterol depletion which in turn, promotes RAGE 
proteolytic shedding, although exact pathway remains 
uncertain. Consequently, circulating sRAGE level in-
creases to scavenge AGEs and attenuate RAGE-mediated 
downstream signaling.

expression in the endothelial tissues [66,67]. This can 
further diminish NF-κB activation which helps to inhibit 
many downstream implications such as prothrombotic 
and proinflammatory responses of the blood vessels [3]. 
Two clinical trials reported significant increase in soluble 
RAGE (sRAGE) level with the treatment of rosiglitazone 
[68] and pioglitazone, in which the sRAGE-inducing ef-
fect of the latter was more prominent and rapid [69].

Principally, sRAGE originates from two sources, 
namely the proteolysis cleavage from membrane-bound 
RAGE [70] and the alternative splice variant of RAGE 
which is also known as endogenous secretory RAGE 
(esRAGE) [71]. Compared to the full-length RAGE iso-
form, sRAGE does not have the transmembrane and cy-
toplasmic signaling domains. As a result, ligand binding 
to sRAGE is unable to trigger signaling cascades. Such a 
distinctive feature makes sRAGE an effective decoy and 
competitive inhibitor of its membrane-bound counter-
part which allows sRAGE to scavenge circulating AGEs, 
facilitate AGE detoxification and attenuate the patholog-
ical processes induced by RAGE activation [72]. More-
over, in T2DM patients, sRAGE was negatively correlat-
ed to RAGE expression, strongly indicative of a benefi-
cial role of sRAGE in modulating AGE-RAGE axis [73]. 
Therefore, even though how exactly TZDs increase cir-
culating sRAGE is largely unclear, such a bioactivity may 
mediate AGE disposal and suppress RAGE activation.

Despite the promising AGE-RAGE inhibitory effect 
of TZD, it is important to highlight that the sample size 
of the clinical trials was too small to draw a conclusive 
remark about its efficacy. Larger trials are therefore, war-
ranted to fully elucidate the clinical prospect of TZDs in 
targeting AGE-RAGE axis. In addition to metformin and 
TZDs, the effects of repaglinide (meglitinide), glimepir-
ide (sulfonylurea) and alogliptin (DPP4 inhibitor) on 
AGE-RAGE axis have also been examined [63,74,75]. 
Their AGE-lowering effect was encouraging and com-
parable to metformin and TZDs. However, the studies 
are also limited by their small sample sizes. In short, an-
ti-hyperglycaemic drugs are potent AGE inhibitors in 
concordance to their glucose-lowering effects. Future 
studies are indispensable and should emphasize on their 

AGE: Advanced Glycation End Product; AOPP: Advanced Oxidation Protein Products; CRP: C-Reactive Protein; DPP4: Dipep-
tidyl Peptidase-4; esRAGE: Endogenous Secretory Receptor for Advanced Glycation End Product; FRAP: Ferric Reducing Anti-
oxidant Power; IL-6: Interleukin-6; LCAT: Lecithin-Cholesterol Acyltransferase; LPL: Lipoprotein Lipase; NO: Nitric Oxide; PON: 
Paraoxonase; RCT: Randomised Controlled Trial; ROS: Reactive Oxygen Species; sRAGE: Soluble Receptor For Advanced 
Glycation End Product; T2DM: Type 2 Diabetes Mellitus; TNF-α: Tumour Necrosis Factor-α; TZD: Thiazolidinedione; VCAM-1: 
Vascular Cell Adhesion Molecule-1.

Alogliptin 
(DPP4 
inhibitor)

Single-arm 
study

T2DM (n = 61)

•	 25 mg alogliptin 

12 weeks •	 Alogliptin reduced fasting glucose, 
glycoalbumin, HbA1c, sRAGE and 
urine albumin-to-creatinine ratio.

•	 AGE level was reduced only in 
patients with high AGE level.

[74] 
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Table 3: Clinical studies of AGE-RAGE inhibitory effects of lipid-lowering drugs.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Atorvastatin RCT T2DM, hypercholesterolaemia 
(n = 25)
•	 Diet therapy (n = 31)
•	 10 mg atorvastatin (n = 62)

4 weeks •	 Atorvastatin significantly reduced 
AGE level, total cholesterol, LDL 
and triglycerides compared to diet 
control.

[77]

Atorvastatin Single-arm NASH, dyslipidaemia (n = 43)
•	 10 mg atorvastatin

12 months •	 AGE levels were reduced, 
NAFLD activity was improved and 
serum glucose levels remained 
unchanged.

[79]

Atorvastatin Double-blind 
RCT

T2DM, hypercholesterolaemia 
(n = 80)
•	 Placebo (n = 41)
•	 10-20 mg atorvastatin (n = 39)

6 months •	 Atorvastatin elevated serum 
esRAGE, but not sRAGE in 
comparison to placebo.

[80]

Atorvastatin RCT Acute myocardial infarction 
(n = 190)
•	 40 mg atorvastatin as loading 

dose, followed by 10 mg as 
maintenance dose prior to 
PCI (n = 98)

•	 PCI only (n = 92)

30 days •	 Atorvastatin improved left 
ventricular ejection fraction at 6 
months post-infarction.

•	 Atorvastatin lowered angiopoietin-
like protein 2 and glyceraldehyde-
derived AGEs 2 week post-
infarction.

[96]

Atorvastatin
Pravastatin

Single-arm Hypercholesterolaemia (n = 20)
•	 20 mg atorvastatin/40 mg 

pravastatin

8 weeks •	 Both statins reduced urinary 8-iso-
PGF2α while only atorvastatin 
elevated sRAGE.

•	 No significant change in ADMA 
levels for both statins.

[78]

Atorvastatin 
Pitavastatin

Single-arm Acute coronary syndrome (n = 208)
•	 4 mg pitavastatin/20 mg 

atorvastatin

8-12 
months

•	 Both statins significantly decreased 
AGE level without changing 
sRAGE.

[81]

Pravastatin
Pitavastatin

Randomised, 
parallel group 
study

Angina pectoris, post PCI (n = 91)
•	 4 mg pitavastatin (n = 46)
•	 20 mg pravastatin (n = 45)

8 months •	 Both statins did not affect 
circulating AGE level.

•	 Both statins elevated sRAGE level 
which was negatively correlated 
with external elastic membrane 
volume and plaque volume.

[97]

Simvastatin RCT T2DM, asymptomatic carotid 
artery stenosis (n = 70)
•	 AHA step I diet (n = 35)
•	 AHA step I diet and 40 mg 

simvastatin (n = 35)

4 months •	 Simvastatin reduced MPO, AGEs, 
RAGE, p65, COX-2, mPGES-1, 
MMP-2, MMP-9, lipids, oxLDL, 
gelatinolytic activity, macrophages, 
T-lymphocytes and HLA-DR + 
while increased procollagen 1 and 
collagen in plaques.

[82]

8-iso-PGF2α: 8-iso Prostaglandin F2α; ADMA: Asymmetric Dimethylarginine; AGE: Advanced Glycation End Product; AHA: Amer-
ican Heart Association; COX-2: Cyclooxygenase-2; esRAGE: Endogenous Secretory Receptor For Advanced Glycation End 
Product; LDL: Low Density Lipoprotein; MMP-2: Matrix Metalloproteinase-2; MMP-9: Matrix Metalloproteinase-9; mPGES-1: 
Membrane-Associated Prostaglandin E2 Synthase-1; MPO: Myeloperoxidase; NAFLD: Non-Alcoholic Fatty Liver Disease; NASH: 
Non-Alcoholic Steatohepatitis; oxLDL: Oxidised Low Density Lipoprotein; PCI: Percutaneous Coronary Intervention; RAGE: Re-
ceptor for Advanced Glycation End Product; RCT: Randomised Controlled Trial; sRAGE: Soluble Receptor for Advanced Glyca-
tion End Product; T2DM: Type 2 Diabetes Mellitus.

lular signaling pathways like NF-κB and MAPK which 
resulted in reduced reactive oxygen species production 
[91]. As a result, the reduced oxidative stress may inhibit 
AGE formation and RAGE-mediated proinflammatory 
signaling, which contribute to the beneficial effects ob-
served in clinical studies.

As opposed to statins, the effect of fibrates (another class 
lipid-lowering drug) on AGE-RAGE axis is poorly under-

It is widely acknowledged that oxidative stress plays 
a critical role in the formation of advanced glycoxida-
tion and lipoxidation end products [87]. In this context, 
statins also possesses antioxidant properties. It has been 
demonstrated that statin can inhibit superoxide genera-
tion from NADPH oxidase via the transcriptional sup-
pression of NADPH oxidase subunits and blockade of 
NADPH oxidase activation [88-90]. Furthermore, treat-
ment with statins could also alleviate AGE-induced cel-
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theless, two recent randomized controlled trials (ACCORD 
Eye study and FIELD study) unraveled the promising ther-
apeutic effect of fibrates on diabetic retinopathy although 
the underlying mechanism remains unclear [94,95]. These 
exciting clinical findings justify future investigations of fi-
brates on AGE-RAGE axis.

stood. Thus far, no clinical evidence is available. In vitro and 
in vivo studies on this aspect is also limited. However, fi-
brates have been demonstrated to attenuate AGE-induced 
NF-κB activation in glomerular microvascular endothelial 
cells [92]. Such an inhibitory on NF-κB activation was also 
found in atherosclerosis-prone, diabetic mice, but whether 
or not the effect was AGE-dependent is unclear [93]. Never-

Table 4: Clinical studies of AGE-RAGE inhibitory effects of anti-hypertensive drugs.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Eprosartan 
(ARB)

Randomised, 
parallel group 
study

Hypertension, diastolic 
dysfunction (n = 97)
•	 600 mg eprosartan (n = 47)
•	 Other hypertensive drugs 

(n = 50)

6 months •	 No beneficial treatment effect 
was detected in CML, CEL and 
pentosidine levels.

[104]

Irbesartan 
(ARB)

Double-blind 
RCT

T2DM, microalbuminuria (n = 
264)
•	 Placebo (n = 125)
•	 300 mg irbesartan 

(n = 139)

2 years •	 No beneficial treatment effect 
was detected in CML and CEL.

[103]

Valsartan 
(ARB)

Single-arm T2DM, hypertension (n = 15)
•	 40 mg valsartan

6 months •	 AGE level and urine 
microalbumin level were 
decreased but oxidative 
markers remained unchanged.

[101]

Valsartan 
(ARB)

Single-arm T2DM, microalbuminuria, 
hypertension (n = 12)
•	 80-160 mg valsartan

6 months •	 Plasma and urinary pentosidine, 
CML and 15-F2t-isoprostanes 
were reduced.

•	 Plasma and urinary 
malondialdehyde was 
unchanged.

[99]

Olmesartan 
(ARB)
Telmisartan 
(ARB)

Randomised, 
parallel group 
study

Hypertensive, on dialysis 
(n = 24)
•	 20 mg olmesartan (n = 12)
•	 40 mg telmisartan (n = 12)

24 weeks •	 Olmesartan decreased systolic 
blood pressure, pentosidine and 
CML compared to telmisartan.

[100]

Ramipril (ACE 
inhibitor)

Nonrandomised, 
parallel group 
study

Non-diabetic nephropathy 
(n = 19)
•	 2.5-5 mg ramipril (n = 12)
•	 Other anti-hypertensive 

drugs (n = 7)

2 months •	 AGE fluorescence, AOPP 
decreased and malondialdehyde 
by ramipril therapy but CML 
remained unchanged.

[118]

Irbesartan 
(ARB)
Amlodipine 
(CCB)

Double-blind 
RCT

T2DM, nephropathy (n = 196)
•	 Placebo (n = 70)
•	 300 mg irbesartan (n = 65)
•	 10 mg amlodipine (n = 61)

2 years •	 No beneficial treatment effect 
was detected in pentosidine and 
CML levels for ARB and CCB.

[102]

Azelnidipine 
(CCB)
Amlodipine 
(CCB)

Randomised, 
parallel group 
study

Non-diabetic chronic kidney 
disease (n = 30)
•	 16 mg azelnidipine (n = 15)
•	 5 mg amlodipine (n = 15)

6 months •	 Azeldipine decreased AGE, 
sRAGE, proteinuria and 
urinary levels of liver-type fatty 
acid binding protein but not 
amlodipine.

[120]

Nifedipine- 
Telmisartan 
combined 
therapy

Single-arm Hypertensive, 
microalbuminuria (n = 262)
•	 20 mg nifedipine-80 mg 

telmisartan combined 
therapy

24 weeks •	 Significant increase in plasma 
sRAGE was observed.

[121]

ACE: Angiotensin Converting Enzyme; AGE: Advanced Glycation End Product; AOPP: Advanced Oxidation Protein Product; 
ARB: Angiotension II Receptor Blocker; CCB: Calcium Channel Block; CEL: Carboxyethyllysine; CML: Carboxymethyllysine; 
RCT: Randomised Controlled Trial; sRAGE: Soluble Receptor for Advanced Glycation End Product; T1DM: Type 1 Diabetes 
Mellitus; T2DM: Type 2 Diabetes Mellitus.
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glyoxalase-I mRNA expression and activity which were 
otherwise, impaired by angiotensin II [112]. Overexpres-
sion of glyoxalase I has been shown to cause a markedly 
low intracellular AGE level, suggesting that ARBs could 
promote detoxification of AGE precursors which reduces 
AGE accumulation [113]. Additionally, ARBs may also 
possess transition metal chelating ability which allows 
them to cease a number of oxidative reactions involved 
in the glycation pathway and dicarbonyl generation 
[114]. Collectively, these mechanisms could contribute 
to the AGE-lowering effect following ARB therapy.

Apart from AGE-lowering effect, ARB-treated diabetic 
patients showed decent improvements in various inflam-
matory and oxidative stress markers, namely, high-sensitive 
C-reactive protein, interleukins-6 and -18 [110,115]. This 
suggests possible inhibition of RAGE-associated cellular 
signaling as evidenced by the suppression of RAGE activa-
tion upon ARB treatment [116,117]. To date, the evidence 
about the inhibitory activity of ARBs on AGE-RAGE axis is 
fairly limited and so, such a bioactivity remains inconclu-
sive. However, clinical studies did show beneficial effects of 
ARBs to retard diabetic microvascular disease progression 
which makes ARBs a desirable therapeutic candidate. Fur-
ther investigations are necessary to delineate the possible 
underlying mechanisms of ARBs on AGE-RAGE axis.

Like ARBs, ACE inhibitors also act on RAAS. In-
stead of blocking the receptor, they inhibit the conver-
sion of angiotensin I to angiotensin, thereby preventing 
the activation of angiotensin II type I receptor. One trial 
showed that ramipril could reduce AGE level [118] while 
another work demonstrated comparable therapeutic ef-
fect between enalapril and telmisartan in delaying dia-
betic nephropathy deterioration [106]. Like ARBs, it is 
proposed that ACE inhibitors can chelate the transition 
metals that catalyse AGE formation [114]. Nevertheless, 
the AGE-inhibiting effect of ACE inhibitors is still in-
conclusive due to inadequate evidence.

Another class of anti-hypertensive, CCBs including 
azelnidipine, amlodipine and nifedipine have also been 
tested for their AGE-RAGE inhibitory effect. Unlike 
ARBs and ACE inhibitors, CCBs do not target RAAS 
but instead, directly antagonize the calcium influx into 
muscle tissues to cause arterial dilation and decline in 
blood pressure [119]. Treatment with amlodipine failed 
to lower AGE level [102] whereas azelnidipine could 
[120]. Combined therapy with nifedipine and telmisar-
tan significantly elevated sRAGE level, but whether or 
not such a beneficial effect was conferred by nifedipine 
is unknown [121]. CCBs are also found to repress RAGE 
expression in vitro by acting as PPARγ agonist [122]. 
However, clinically, such a RAGE modulatory effect of 
CCBs via PPARγ activation is unlikely as no impact on 
glycaemic parameters was observed [120]. On the other 

As such, our knowledge about the effect of fibrates on 
the glycation pathway is lacking, but recent clinical stud-
ies may suggest possible therapeutic effects. Conversely, 
statins are well-studied and have a huge potential to be 
AGE-lowering agents. The RAGE shedding mechanism 
is also unique to HMG-CoA reductase inhibitors. Clin-
ically, statins are known to associate with very few side 
effects. Hence, all these favorable features make statins a 
practical and excellent choice to be developed as a thera-
peutic intervention targeting AGE-RAGE axis in diabet-
ic vasculopathy (Table 3).

Anti-hypertensive agents
Table 4 summarizes clinical studies on AGE-inhibiting 

effects of anti-hypertensive drugs of different pharmacolog-
ical classes like Angiotensin Receptor Blockers (ARBs), An-
giotensin Converting Enzyme (ACE) inhibitors and Cal-
cium Channel Blockers (CCBs). Among the three classes, 
ARBs are the most extensively studied drugs on AGE-RAGE 
axis. Basically, angiotensin II receptors play an integral role 
in Renin-Angiotensin-Aldosterone System (RAAS), a hor-
mone system that regulates blood pressure, electrolyte and 
water balance. Blocking the receptor results in vasodilation, 
reduction in aldosterone and catecholamine secretion as 
well as reduced water reabsorption which collectively lower 
blood pressure [98].

Regarding the inhibitory effect of ARBs on AGE-
RAGE axis, clinical trials produced mixed results. Small 
and short (6 months) trials indicated that Carboxyl-
methyllysine (CML) and pentosidine were significantly 
reduced in hypertensive patients by valsartan and olme-
sartan [99,100]. This is further supported by another 
single-arm study which reported decreased serum AGEs 
after valsartan therapy in Japanese T2DM patients with 
hypertension [101]. In contrast, larger RCTs with longer 
follow-up duration (2 to 4 years) concluded that treat-
ment with ARBs did not lower AGEs and other AGE ad-
ducts like CML and pentosidine [102-104]. Nonetheless, 
ARBs could efficaciously delayed kidney failure progres-
sion [105,106], reduced the severity and risk of retinopa-
thy in diabetic patients [107,108]. These findings support 
the use of ARBs for the management and prevention of 
diabetic vascular complications.

Various mechanisms have been proposed to explain 
ARB-facilitated AGE reduction. It is speculated that 
ARBs are potential PPARγ agonist that can exert glycae-
mic control and AGE-lowering effect similar to TZDs 
[109]. However, this is somewhat unlikely because ARB 
therapy has no apparent effect on fasting blood glucose 
and HbA1c level [101,110]. Another putative mechanism 
is by the restoration of glyoxalase-I activity. Basically, 
glyoxalase-I is a key enzyme in the detoxification of AGE 
precursors, namely glyoxal, methylglyoxal and 3-deox-
yglucosone [111]. Candesartan was capable of rescuing 
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rized in Table 5. Some common pitfalls of the clinical 
trials are short treatment duration and small sample 
size. Generally, the studies reported mixed results on the 
AGE-RAGE inhibitory effect of vitamin B derivatives. 
Some studies detected beneficial AGE-lowering effect 
by benfotiamine [125,126] and by pyridoxamine [127] 
whereas others found no such activity [128-130].

Despite being in the same vitamin group, vitamins 
B1 and B6 are thought to have very distinct inhibitory 
mechanism on the AGE-RAGE axis. By supplying an es-
sential cofactor of transketolase which is thiamine pyro-
phosphate, thiamine and benfotiamine enhance transke-
tolase activity to channel fructose-6-phosphate and glyc-
eraldehydes-3-phosphate from glycolysis into pentose 
phosphate pathway [131]. As this is also the rate-limit-
ing step in pentose phosphate pathway, the activation of 
transketolase can effectively prevent the aggregation of 
the two metabolites which will otherwise be driven into 
dicarbonyl and AGE formation [132].

Conversely, pyridoxamine and pyridoxine can bind 

hand, AGE exposure has been shown to prolong calci-
um decay time in the cardiomyocytes which might in-
duce abnormal contraction of the cardiac muscles [123]. 
Furthermore, CML-treated vascular smooth muscle cells 
had increased calcium release from the sarcoplasmic re-
ticulum and calcium entry, contributing to the onset of 
enhanced contractility and hypertension [124]. The use 
of CCBs may be able to alleviate the adverse effects of 
AGE-RAGE axis on calcium regulation in muscle tis-
sues. As such, like other antihypertensive agents, the in-
hibitory effects of CCBs on AGE-RAGE axis lack strong 
support from clinical evidence. Further clarifications on 
its mechanisms and efficacy are required to justify its 
clinical value in AGE-RAGE inhibition and managing 
diabetic complications (Table 4).

Vitamins B and its derivatives
Basically, the AGE-RAGE inhibitory effect of two 

types of vitamin B, namely vitamins B1 (thiamine and 
benfotiamine) and B6 (pyridoxine and pyridoxamine), 
have been examined. The clinical findings are summa-

Table 5: Clinical studies of AGE-RAGE inhibitory effects of vitamins B and its derivatives.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Benfotiamine Non-
randomised 
crossover 
study

T2DM (n = 13)
•	 High AGE content meal 

with and without 1050 mg 
benfotiamine pre-treatment

3 days •	 High AGE content meal 
increased AGE level, endothelial 
dysfunction and oxidative stress 
markers which were reduced by 
benfotiamine.

[125]

Benfotiamine Single-arm T1DM (n = 9)
•	 600 mg benfotiamine-1200 mg 

α-lipoic acid

28 days •	 Benfotiamine treatment together 
with α-lipoic acid normalised 
angiopoietin-2, monocyte 
hexosamine-modified proteins, 
prostacyclin synthase activity and 
AGE formation.

[126]

Benfotiamine Double-blind 
RCT

T2DM, microalbuminuria (n = 82)
•	 Placebo (n = 43)
•	 900 mg benfotiamine (n = 39)

12 weeks •	 Benfotiamine did not decrease 
urinary albumin excretion and 
tubular damage marker, kidney 
injury molecule-1.

[128]

Benfotiamine Double-blind 
RCT

T2DM, microalbuminuria (n = 82)
•	 Placebo (n = 43)
•	 900 mg benfotiamine (n = 39)

12 weeks •	 Benfotiamine had no effect on 
plasma and urinary CML, CEL 
and MG-H1 as well as other 
endothelial dysfunction and low-
grade inflammatory markers.

[129]

Pyridoxamine Double-blind 
RCT

DM, overt nephropathy (n = 212)
•	 Placebo (n = 90)
•	 100-500 mg pyridoxamine 

(n = 122)

24 weeks •	 Pyridoxamine reduced serum 
creatinine, urinary TGF-β1, CML 
and CEL.

[127]

Thiamine-
Pyridoxine 
combined 
therapy

RCT On haemodialysis (n = 50)
•	 Placebo (n = 25)
•	 250 mg thiamine-200 mg 

pyridoxine combined therapy 
(n = 25)

8 weeks •	 No beneficial treatment effect was 
observed in the serum albumin, 
plasma hsCRP, IL-6, AOPP, 
pentosidine and 8-hydroxy-2’-
deoxyguanosine of the combined 
treatment.

[130]

AGE: Advanced Glycation End Product; AOPP: Advanced Oxidation Protein Product; CEL: Carboxyethyllysine; CML: Car-
boxymethyllysine; DM: Diabetes Mellitus; hsCRP: High Sensitive C-Reactive Protein; IL-6: Interleukin-6; MG-H1: Methylglyox-
al-Derived Hydroimidazolone 1; RCT: Randomised Controlled Trial; T1DM: Type 1 Diabetes Mellitus; T2DM: Type 2 Diabetes 
Mellitus; TGF-β1: Transforming Growth Factor-β1.
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genesis requires further investigation in light of the con-
tradictions from the available studies (Table 5).

Other Investigational Interventions and Fu-
ture Drug Development

In addition to the aforementioned five major classes 
of pharmacological agents, a few other drugs, including 
azeliragon (RAGE inhibitor), epalrestat (aldose reduc-

to catalytic redox metal ions which are vital to convert 
Amadori products to AGEs in the glycation pathway 
[133]. The post-amadori inhibition effectively prevents 
the formation of AGEs and hence, a new term “Ama-
dorin” was coined to describe drugs behave similarly to 
vitamin B6 in the inhibition of AGE-RAGE axis [134]. 
However, the clinical prospect of both the vitamin B1 
and B6 in alleviating the AGE-RAGE-mediated patho-

Table 6: Other clinical trials that investigate the inhibitory effect of other pharmacological interventions on AGE-RAGE axis.

Therapeutic 
drug

Experimental 
design

Patient characteristics and 
treatment groups

Treatment 
duration

Major findings Reference

Azeliragon 
(RAGE inhibitor)

Double-blind 
RCT

≥ 50-years-old, Alzheimer’s 
disease, dementia (n = 60)

•	 Placebo (n = 10)

•	 Low-dose Azeliragon: 30 
mg starting dose; 10 mg 
maintenance (n = 25)

•	 High-dose Azeliragon: 60 
mg starting dose; 20 mg 
maintenance (n = 25)

10 weeks •	 Low-dose regimen was more 
tolerable than high-dose 
regimen. 

•	 No significant difference 
in terms of vital signs, 
plasma level of amyloid β, 
proinflammatory cytokines 
and cognitive performance 
between groups.

[152] 

Azeliragon 
(RAGE inhibitor)

Double-blind 
RCT

≥ 50-years-old, Alzheimer’s 
disease (n = 399)

•	 Placebo (n = 133)

•	 Low-dose Azeliragon: 15 
mg starting dose; 5 mg 
maintenance (n = 131)

•	 High-dose Azeliragon: 60 
mg starting dose; 20 mg 
maintenance (n = 135)

18 months •	 High-dose arm was terminated 
prematurely due to increased 
adverse event like confusion, 
falls and cognitive decline.

•	 Low-dose regimen was well-
tolerated and delayed cognitive 
decline.

•	 No significant difference in 
CSF levels of amyloid β, total 
tau protein and phospho-
tau-181 between groups. 

[137] 

Azeliragon 
(RAGE inhibitor)

Double-blind 
RCT

≥ 50-years-old, Alzheimer’s 
disease (n = 399)

•	 Placebo (n = 133)

•	 Low-dose Azeliragon: 15 
mg starting dose; 5 mg 
maintenance (n = 131)

•	 High-dose Azeliragon: 60 
mg starting dose; 20 mg 
maintenance (n = 135)

18 months •	 Low-dose regimen slowed 
down cognitive decline 
among the patients with mild 
Alzheimer’s disease.

[138] 

Epalrestat 
(Aldose 
reductase 
inhibitor)

Observational 
study

T2DM and nondiabetic (n = 66)

•	 Nondiabetic (n = 12)

•	 Untreated T2DM (n = 38)

•	 150 mg epalrestat (n = 16)

≥ 2 months •	 Treatment with epalrestat 
was associated with lower 
erythrocyte CML, 3-DG, 
triosephosphates, fructose and 
sorbitol. 

[139] 

Epalrestat 
(Aldose 
reductase 
inhibitor)

Observational 
study

T2DM (n = 74)

•	 Untreated T2DM (n = 36)

•	 150 mg epalrestat (n = 38)

2 years •	 Epalrestat reduced CML and 
slowed down the deterioration of 
diabetic peripheral neuropathy. 

[140] 

1, 25 
dihydroxyvitamin 
D3 (Vitamin D)

Observational 
study

Vitamin D deficit women w/o 
PCOS (n = 67)

•	 Untreated (n = 16)

•	 50000 IU vitamin D3 (n = 51)

8 weeks •	 Vitamin D3 supplementation 
increased circulating sRAGE in 
women with PCOS, but not in 
those without PCOS. 

[153] 
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an attractive choice to reduce AGE formation. In fact, 
the reduction of dicarbonyl compounds like CML and 
3-deoxyglucosone with the use of epalrestat which is an 
aldose reductase inhibitor, is strongly supported by clin-
ical evidence [139,140]. The inhibition of aldose reduc-
tase and blockade of polyol pathway is further translated 
into other beneficial effects, most notably the delayed 
progression of diabetic retinopathy, nephropathy and 
neuropathy [141,142]. Thus far, the clinical results of al-
dose reductase inhibitor, especially in diabetic cardiovas-
cular autonomic neuropathy, are exceedingly favourable 
[143], making it a valuable drug for the therapy of dia-
betic complications.

The inhibitory effect of vitamins D and E on AGE-
RAGE axis have also been examined in non-diabetic pa-
tients, both of which showed a certain extent of benefi-
cial effects by increasing sRAGE or lowering circulating 
AGEs respectively. The actual mechanism remains un-
clear, but may be partially explained by their antioxidant 
properties [144,145]. Speaking of antioxidant activity, 
α-lipoic acid which is a potent antioxidant can also con-
fer AGE-lowering effect in diabetic patients when it is 
used together with other potential AGE inhibitors like 
benfotiamine and pyridoxine [126,146]. However, these 
studies did not include an “α-lipoic acid only” cohort 
and hence, its effect on AGE-RAGE axis independent 
from the interaction with other compounds is unclear. 
It is worth mentioning that α-lipoic acid has been exten-
sively tested in diabetic patients and consistently shown 
to alleviate oxidative stress, improve lipid and glucose 

tase inhibitor), vitamin D and vitamin E, have also been 
tested clinically for their AGE-RAGE inhibitory effects 
as summarised in Table 6.

In this context, it is worth noting that RAGE-induced 
pathogenesis, particularly upon the interaction with am-
yloid β, is well-implicated in neurodegenerative diseas-
es like Alzheimer’s disease [135]. Therefore, azeliragon 
or PF-04494700 or TTP488, which is a small-molecule 
RAGE antagonist, has been developed as an investiga-
tional drug against Alzheimer’s disease and diabetic 
neuropathy. Unfortunately, the development of the drug 
for the latter has been discontinued. For Alzheimer’s dis-
ease, a preclinical study using transgenic mice that over-
expressed human amyloid precursor proteins demon-
strated an excellent, dose-dependent therapeutic efficacy 
of azeliragon in terms of the amyloid plaque formation, 
proinflammatory response, cerebral glucose utilisation 
and behavioural impairment [136]. However, in hu-
man clinical trials, at higher dosages (≥ 20 mg/day), the 
drug seemed to accelerate cognitive dysfunction [137]. 
Low-dose regimen, on the other hand, might confer 
some protection against cognitive deterioration, notably 
among the patients with mild Alzheimer’s disease [138]. 
Currently, two phase 3 clinical studies are on-going to 
explore the short- and long-term efficacy and safety of 
azeliragon. Positive findings from these trials may sup-
port the use of azeliragon in diabetic vasculopathy.

Next, as mentioned previously, reactive carbonyl 
species which is AGE precursors can be derived from 
the polyol pathway. Therefore, blocking the pathway is 

3-DG: 3-Deoxyglucosone; AGE: Advanced Glycation End Product; CML: Carboxymethyllysine; CSF: Cerebrospinal Fluid; PCOS: 
Polycystic Ovarian Syndrome; RAGE: Receptor for Advanced Glycation End Product; RCT: Randomised Controlled Trial; T1DM: 
Type 1 Diabetes Mellitus; T2DM: Type 2 Diabetes Mellitus; SMC: Synthetic Modified Cellulose Membrane.

Vitamin E RCT Nondiabetic patients on 
haemolysis (n = 16)

•	 Conventional SMC membrane 
(n = 8)

•	 Vitamin E-coated dialyzer 
(n = 8)

42 weeks •	 Dialysis with vitamin 
E-coated membrane lowered 
pentosidine and AGEs in the 
bloodstream.

[154] 

α-lipoic acid Single-arm T1DM (n = 9)

•	 1200 mg α-lipoic acid plus 600 
mg benfotiamine

28 days •	 α-lipoic acid plus benfotiamine 
normalised angiopoietin-2, 
monocyte hexosamine-modified 
proteins, prostacyclin synthase 
activity and AGE formation.

[126] 

α-lipoic acid RCT Diabetic nephropathy (n = 34)

•	 Placebo (n = 17)

•	 800 mg α-lipoic acid plus 80 
mg pyridoxine (n = 17)

12 weeks •	 α-lipoic acid plus pyridoxine 
lowered urinary albumin, 
serum malonyldialdehyde and 
systolic blood pressure and 
enhanced circulating nitric 
oxide compared to placebo.

•	 Supplemented group 
showed significant decline 
in pentosidine and CML at 
the end of the experiment 
compared to baseline. 

[146] 
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imply that targeting AGE-RAGE axis is a futile attempt. 
In fact, recent breakthrough in Alzheimer’s disease with 
the use of specific RAGE inhibitor (azeliragon) points 
out that blockade of RAGE could indeed confer posi-
tive impacts, particularly at the early stage of the disease. 
Likewise, targeting AGE-RAGE axis during pre-diabetic 
state may help to slow down the progression of diabetic 
vascular complications. As for currently available drugs, 
metformin, TZDs and statins show great potential to 
be developed as AGE-RAGE inhibitors as supported by 
concrete clinical evidence. Aldose reductase inhibitors 
are also promising candidates but the clinical evidence 
on AGE-RAGE axis is limited. As such, AGE-RAGE an-
tagonists remain as an interesting clinical option for the 
treatment of diabetes-associated complications. Despite 
the contradictory results, exploratory studies that identi-
fy the specific patient populations whom will be benefit-
ed from the treatment is highly recommended.
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