The Mortal Association of Rothmund Thomson Syndrome and H1N1

Kocak Abdullah Osman*, Bayramoglu Atif and Calbay Ayca
Medical Faculty, Department of Emergency Medicine, Atatürk University, Turkey

Introduction

Rothmund Thomson Syndrome (RTS) is a rare autosomal recessive disorder. It was first described in 1868 by a German ophthalmologist named August Rothmund as a syndrome consisting of bilateral juvenile cataract and rash. In 1923, a British dermatologist named Sydney Thomson used the term “Congenital Poikiloderma” for the association of rash and skeletal anomalies, with no presence of the cataract. In 1957, these two clinical conditions were determined to be the two variants of the same syndrome and were named as RTS [1]. It is of the 1200 rare disorders, defined in the National Organization Database [2].

Two sub types were described for RTS. Sub typing is made according to the presence of RECQL4 gene mutation on the eighth chromosome. RECQL4 gene provides instructions for a ring one member of a protein family called RECQ helicases. Helicase protein helps in DNA repair. In RTS type 1, poikiloderma, ectodermal dysplasia, congenital bone defects, and juvenile cataract are present with no mutation of RECQL4; in RTS type 2, poikiloderma, congenital bone defects, and increased risk of osteosarcoma are present together with mutation of RECQL4. Two-thirds of patients, known up to date, have been reported to be long to RTS Type 2 [2,3].

Cutaneous rash, the sparsity of hair, eyelashes and eyebrows, short stature, skeletal and teeth anomalies, bilateral juvenile cataracts, and early aging have been reported to be among the clinical characteristics of RTS. In RTS, an increased risk is present for some types of cancer such as bone (osteosarcoma) and skin (squamous cell carcinoma), when compared to the normal population [1]. Its treatment is non specific. Standard treatment methods are used according to the developing complications. Calcium and vitamin D supplementation are recommended in patients with osteopenia or with the medical history of pathological fracture. For prevention from skin cancer, sun screen creams are used [4]. We aimed to present a 26-year-old H1N1 (+) patient, diagnosed with RTS and having bilateral diffuse pneumonia and to discuss the pulmonary infections in RTS patients with the review of the literature.

Case Presentation

The twenty-six-year-old male patient was admitted to our emergency service with the complaints of fever, cough, and shortness of breath. His vital signs were as follows: Blood pressure 122/67 mmHg, Pulse: 110/min, Body temperature: 38.5 °C, Respiratory rate: 20/min. His SpO2 was measured as 67%. The patient’s medical history revealed that he had been previously diagnosed with RTS type-2 by genetic analysis when he was 9-year-old. Because of his recurrent infections on his childhood and bone abnormalities, his parents need for an advance analysis with the physicians who was interesting their child. After this history and advance laboratuary tests he had been taken this diagnose. He had a cachectic and dyspneic appearance. Poikiloderma was present, particularly on his face and neck. He had cataract and sparsity of hair, eyebrows, and eyelashes. He had signs of early aging and symmetrical growth retardation (Figure 1). He had no skeletal anomaly. He had decayed teeth in his mouth, and on auscultation of the breath sounds, he had rales. His laboratory tests revealed normal results. PA

*Corresponding author: Dr. Kocak Abdullah Osman, Medical Faculty, Department of Emergency Medicine, Atatürk University, Turkey, Tel: +90-442-344-7786, E-Mail: abdullahmrym86@gmail.com

Received: January 16, 2017; Accepted: April 08, 2017; Published online: April 10, 2017

Citation: Osman KA, Atif B, Ayca C (2017) The Mortal Association of Rothmund Thomson Syndrome and H1N1. Dermatol Arch 1(1):8-10

Copyright: © 2017 Osman KA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
A chest X-ray was obtained, which revealed bilateral diffuse infiltrations (Figure 2). Chest CT was performed, which showed diffuse infiltrations, together with air bronchograms, bilaterally (Figure 3). Since SpO2 was 80% despite broncho dilator treatment, he was hospitalized in the intensive care unit with the preliminary diagnosis of pneumonia. His laboratory tests for IgA, IgG, and IgM revealed normal levels. He was diagnosed with the H1N1 infection with “Real-time” Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), and his clinical condition worsened edduring his stay in the intensive care unit. Endotracheal intubation was performed and the patient died, following 15 days of intensive care follow-up.

Discussion

To our knowledge, our patient has been the first and only patient in the literature with the diagnosis of RTS, who died due to swineflu. Sporadic gastrointestinal, hemorrhagic, and respiratory disorders have been reported but lower respiratory system infections were rarely reported [5]. Influenza viruses are RNA viruses belonging to the Orthomyxoviridae family. The virus has the capacity to develop a different genetic variation, due to its molecular characteristics [6]. Swinefluvirus was first seen in Mexico. Due to its genetical similarity with the influenza virus seen in pigs, it was named as swinefluv. Its clinical features may show great variations, from mild symptoms to severe pneumonia with multifocal infiltrations, acute respiratory distress syndrome, and multiple organ failure. When pulmonary disorders, diabetes mellitus, morbid obesity, autoimmunedisorders, administration of immuno suppressive treatments, neurological or cardiovascular disorders, and pregnancy are present, the course of the disease becomes more severe. Deaths due to swinefluv have occurred mostly in Mexico; the mortality rate was estimated as 0.4% in Mexico. In other countries, the mortality rates were reported to be quite low in cases of swinefluv [7]. In our case with RTS syndrome, swinefluv had a mortal prognosis with out the presence of any additional disorder leading to immunodeficiency.
In conducted studies, no risk for recurrent respiratory system infection could be found in RTS patients [8]. Respiratory system disorders are met sporadically in RTS patients [9]. Although a clear relationship has not been identified between infections of the respiratory system and development of immunodeficiency, in some patients, immunodeficiency was reported [5,10-13]. Since he was 26-years-old, there was no history of recurrent infection, and the immunoglobulin levels were normal, development of immunodeficiency was not considered in our case. RECQL4 proteins are maintain the structure and integrity of DNA, that helps in DNA repair. It was reported that the disorder in DNA helicases might disrupt the local defense mechanism with out affecting the immune system in general [14]. The negative impact of mutations of this gene, such as chromosomal instability, increased malignancy incidence, and focal immunity disorders, have been shown. The gene defects how sits effect more significantly in systems with rapid cell cycle, such as respiratory tract and skin [3]. We suggest that this situation affected the prognosis directly and led to a mortal clinical course.

References