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Introduction
Malondialdehyde (MDA) is used as a marker of lipid perox-

idation and redox signaling in the field of plant physiology and 
is one of the commonly used biomarkers of oxidative stress in 
biomedical and animal studies [1-3]. Beside some pitfalls of 
MDA determination, it is interesting that the number of pub-
lications retrieved from Scopus using key words of “malondi-
aldehyde” and “plant*” was increased from 9000 [4] to 13696 
records (search date; 8th Aug 2020, Scopus database) with the 
numbers of 1304, 1574 and 1094 for years 2018, 2019 and 
2020, respectively. The corresponding numbers of articles for 
key word of “malondialdehyde” are 4643, 5254 and 4028, in 
which 1525, 1579 and 1137 of the articles categorized in the 
subject area of “medicine”, respectively for years 2018, 2019 
and 2020. These figures reveal that MDA has an important 
position in the plant and/or biomedical investigations. The 
involvement of oxidative stress in many physiological and/or 
pathophysiological phenomena is a well-accepted subject in 
both plant and biomedical areas. However, the selection of 
a reliable biomarker for oxidative stress is still a challenging 
subject. The characteristics of an ideal biomarker were sum-
marized in a recent paper [5] which most of them are not ful-
filled by MDA. The main challenges of using MDA along with 
possible solutions were highlighted in this communication.

Challenges
MDA is a highly reactive substance produced from differ-

ent reactions in the biological fluids [6]. Different analytical 
methods have been used for quantification of MDA in bio-
medical [6] and plant [4] samples. The methods, their advan-
tages and disadvantages were reviewed in recent works [4,6] 

in which most of studies employed the spectrophotometric 
assay after derivatization. MDA is usually quantified using a 
simple spectrophotometric, spectrofluorometricand/or en-
zyme linked immunosorbent assay after derivatization with 
thiobarbitoric acid (TBA) at a high temperature (90-100 °C) 
and in acidic solutions [7-9]. Derivatization at ~ 100 °C in-
creases the possibility of MDA evaporation since its boiling 
point is 108 °C [8] and this could be a reason for low repeat-
ability of analytical data and using reflux improves of the an-
alytical results [10]. It has been shown that MDA human plas-
ma levels span from 320 nM to 53797 nM for healthy people 
which is very wide range for normal values [6]. There are so 
many factors affecting the outcome of MDA measurement 
using TBA derivatization and spectroscopy of the adduct. The 
high temperature and low pH conditions are responsible for 
a part of poor reproducibility and repeatability of MDA as-
says which are critically reviewed in a previous report [6], a 
number of possible reasons for poor validation data of MDA 
measurements along with some possible solutions were also 
provided. On the other hand, TBA reacts with a number of al-
dehydes produced during lipid peroxidation which increases 
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the field of bioanalysis and further efforts are in demand to 
provide a fully acceptable and validated analytical method. 
In addition to the recommendations of Morales and Mun-
né-Bosch, it is recommended that before using an analytical 
method for determination of any analyte of interest in a given 
sample, a full validation (or at least partial validation) tests 
on the quality control samples are critically required. These 
tests could be found from Food and Drug Administration or 
International Council on Harmonization guidelines which are 
readily available from internet. These validation tests are es-
pecially recommended for MDA since it is a highly reactive 
analyte. It is obvious that, ignoring this simple fact will result 
in some misleading data, waste of time and resources.
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the complexity of MDA assays. In addition to aldehydes, TBA 
possesses cross-reactions with other biomolecules such as 
L-arginine, L-histidine, L-tyrosine, L-cystein, formaldehyde, ac-
etaldehyde, propanal, sucrose, methylamine, aniline, 4-hex-
ylresorcinol, N-methylpyrrole, indole, 4-aminoacetophenone, 
ethyl p-aminobenzoate, 4,4-sulfonyldianiline, p-nitroaniline, 
azulene, histamine, melatonin, serotonin, spermidine, amino 
sugars, collagen, water soluble proteins and glycogen [6].

There is a very similar situation in the biomedical and plant 
studies regarding the reliability of MDA as a valid biomark-
er. During last couple of years, a number of communications 
were published in various biomedical and analytical journals 
dealing with the shortcomings of MDA and its assay methods 
in such investigations [4-6,11-16]. In these communications, 
attempts were made to gather and represent scientific ev-
idences on the non-reliability of the reported MDA data in 
various biological samples investigated on different diseases 
and the corresponding control groups. One could find lots 
of variations in control groups even using a single analytical 
method [13]. The problems with MDA assay were simply ig-
nored by the research groups as stated by Wade and van Rij 
[12]. Most of shortcomings of MDA and its assay methods in 
plant samples are the same as those in biomedical areas and 
correctly addressed in a recent communication by Morales 
and Munné-Bosch [4].

Potential Solutions
Some improvements could be achieved by using more 

suited derivatization reagents [17]. As noticed above, MDA 
is a highly reactive compound and reacts with lots of existing 
materials in the biological fluids [6] resulting in many deri-
vatized compounds with similar spectroscopic characteristics. 
Employing separation techniques (such as chromatography) 
provide more reliable data for MDA since other derivatives 
could be separated in the chromatographic column [18,19]. 
However, the problems associated with high reactivity and 
chemical stability of MDA along with the variations observed 
in derivatization step will be remained unresolved [5]. Em-
ploying analysis of MDA without derivatization step, as an 
example with GC-MS, is recommended if the valid data could 
be obtained [19]. It should be noted that the accuracy and 
precision of chromatographic methods [17,20] are also rela-
tively out of accepted range recommended by Food and Drug 
Administration guidelines [21]. Concerning these sets of ana-
lytical methods, there are still some concerns on the stability 
of MDA in mid-term and long-term storage of the samples. 
Considering technical troubles with derivatization and quanti-
fication of MDA, we focused on development of electrochem-
ical sensors for real time analysis of MDA in some biological 
samples [22-25] and further studies are still ongoing in our 
and others research groups [26-29]. In the electrochemical 
methods, no derivatization is required, however one should 
consider low repeatability of these methods and variations 
on the electrodes prepared in different batches which limits 
their practical applications.

Conclusion
Quantification of MDA is still a challenging subject in 
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