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Introduction
According to the last World Health Organization (WHO) 

report in 2020, there were 2.3 million women diagnosed with 
breast cancer and 685,000 deaths globally (https://www.who.
int/). Usually, treatment process for breast cancer depends on 
the subtype of cancer and metastasis stage. Surgery, radiation 
therapy, chemotherapy and hormonal therapies are the 
main strategies for breast cancer treatment [1,2]. Tamoxifen 
(Tam) is a non-steroidal compound and commonly used as an 
adjuvant hormonal therapy for patients with breast cancer. 
[3], which inhibits the estrogen activity through binding to the 
estrogen receptor (ER) competitively [4]. Its beneficial effects 
in reducing metastasis, tamoxifen can also lower the risk of 
death from breast cancer [5]. It has been demonstrated that 
10 years of Tam in ER-positive disease produces substantial 
reductions in rates of recurrence and in breast cancer 
mortality during the first decade [6]. There are several 
investigations carried out to describe the hormonal therapy 
effects and drug response mechanism [7-9]. The appropriate 
drug response is a complex interdependent procedure that is 
highly dependent upon several factors including the genetic 
variants background, lifestyle, climate, smoking, and alcohol 
consumption [10]. Moreover, consumption of Tam can have 
side effects that may affect the purpose of the treatment 
[11]. It is shown that Tam induces DNA damages in human 

endometrial cells and increases the incidence of endometrial 
tumors [12]. Therefore, investigating the effect of Tam on 
transcriptome features by meta-analysis can allow us to 
reduce the side effects and explain the role of key genes 
under Tam therapy.

Gene expression analysis at transcriptome level is a 
reliable tool that can show the effects of hormone therapy 
on genes expression profiles. It has been shown through 
several studies that there is a close association between 
transcriptome response and therapeutic drug consumption 
[13-16]. It was found from one of the main investigations 
that carried out a comprehensive transcriptomic analysis 
on Tam resistance that lncRNAs profiling breast cancer cells 
would provide a new light on the identification of novel 
endocrine resistance biomarkers [17]. Lanceta, et al. (2020) 
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Tamoxifen (Tam) is an effective hormone therapy in order to reduce the risk of cancer recurrence. Investigation of the 
effect of Tam on transcriptome features by meta-analysis can help us to understand the effect of Tam on biological 
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calculate RPKM for genes without transcripts = Yes [24]. The 
total reads of DEGs were analyzed by Meta-seq package in 
order to identification of common up and down-regulated 
genes among experiments [25]. The outputs of meta-analysis 
were used in gene ontology enrichment analysis (P ≤ 0.01) 
by gene ontology consortium (http://geneontology.org). Heat 
map and volcano plot were implemented to visualize the 
Meta-analysis results.

Results

Meta-analysis outcomes
Volcano plot: Results of the meta-analysis showed that 

there were 21515 common up and down-regulated genes, 
while findings of Volcano plot indicated that most of DEGs 
were classified as the down-regulated genes. At significant 
levels (P < 0.01, -Log10 (P-value) > 2), there were 910 and 3 
candidate genes reported as the significant down- and up-
regulated ones (Figure 1).

Results of Volcano plot showed that three candidate 
genes including GREB1, EGR3, and XAF1 were clustered as 
the up-regulated genes. It was also found that the estrogen-
based growth regulation in breast cancer 1 (GREB1) was 
an early estrogen-responsive gene, and there was a close 
association between GREB1 expression and estrogen levels in 
breast cancer patients. In fact, GREB1 was an ESR1 (estrogen 
receptor 1) that could mediate the estrogen action. It was 
reported that the optimal level of GREB1 expression was 
required for breast cancer cells proliferation [26]. However, 
GREB1 knockdown could prevent the breast cancer cell lines 
proliferation; therefore, it was found that targeting GREB1 
could provide a possible treatment strategy through inhibiting 
the tumor-promoting pathways [27]. Early growth response 
(EGR) is a family of transcription factors that contributes to 
various biological pathways [28]. It was reported that EGR3 
could be induced by estrogen in breast cancer MCF-7 cells 
and consequently, become involved in the estrogen-signaling 
pathway [29]. Moreover, EGR3 levels were significantly 
higher within tissue samples derived from patients with 
recurrent breast cancer compared to those with primary 
tumors [30]. XIAP-associated factor 1 (XAF1) is a tumor 
suppressor observed in the multiple human neoplasm’s [31]. 
It was shown that XAF1 loss expression would be resulted 
from tumor staging and its dysfunction was associated with 
tumor progression. Moreover, its appropriate expression 
could play a critical role in the apoptosis inductions and 
tumor growth inhibition in the gastric cancer [32]. Pinto, et 
al. (2020) reported that XAF1 may be considered as a TP53 
function modifier through increasing the transcriptional 

carried out RNA sequencing (RNA-seq) and pathway analysis 
in ER+ MCF7, and reported 2183 up-regulated and 1548 
down-regulated transcripts that contributed to cell cycle, 
DNA replication, and DNA repair and autophagy [18]. It was 
indicated that the effects of Tam on the breast cancer MCF-7 
cell line are mediated by the activation of important signaling 
pathways including Tp53 and Mitogen-Activated Protein 
Kinase (MAPKs) to induce apoptosis [19]. Meta-analysis of 
integrated Chip-seq and transcriptome data demonstrated 
that many transcription factors such as POU5F1B, ZNF662, 
ZNF442 affected by ER were up-regulated [20]. Interestingly, 
the meta-analysis investigations showed that that circRNAs 
could be considered as a good potential clinical biomarkers in 
breast cancer patients [21,22].

Current study investigates the effect of Tam on the gene 
expression profile at transcriptome level. Meta-analysis of 
genes expression studies could be useful to understand the 
drug response mechanism; also, it would provide a new 
insight to the increase of the chance of survival, decrease 
the side effects, and select an appropriate strategy for the 
therapy period.

Materials and Methods

Data collection
In current study, the whole-transcriptome (RNA-seq) 

dataset of four investigations were derived from EBI (https://
www.ebi.ac.uk/). More details of collected datasets were 
provided in Table 1.

Quality control and trimming
Various parameters were applied in CLC Genomic 

Workbench (12) in order to determine the quality for each 
sample including length distribution, GC content, ambiguous 
base content, Phred score, nucleotide contribution, enrich 5 
mers, and duplicate sequences [23]. Due to the fact that the 
adaptor sequences were cleaned in the achieved datasets, 
the adaptor trimming was not achieved.

RNA-seq analysis, meta-analysis and gene 
ontology enrichment analysis

The reference genome (hg38) and all of the annotations 
were downloaded from Ensembl database (www.ensembl.
org). Also, the process of differential expressed genes (DEGs) 
analysis was carried out through CLC Genomics Workbench 
(12) on the basis of following parameters including mismatch 
cost = 2, insertion cost = 3, deletion cost = 3, length fraction 
= 0.7, similarity fraction = 0.8, expression value = total reads, 

Table 1: More details of RNA-seq datasets to discover the genetic variants and gene expression analysis.

Accession number Control samples Treatment samples Drug type Cell line

E-MTAB-822 1 2 Tamoxifen MCF7

E-GEOD-59536 1 1 Tamoxifen MCF7

E-GEOD-62613 1 1 Tamoxifen MCF7

E-GEOD-78199 6 6 Tamoxifen MCF7

Total 9 10 ---- ----

http://geneontology.org
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
http://www.ensembl.org
http://www.ensembl.org
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findings indicated the vital role of KLHL14 in the development 
of various cancers including ovarian cancer [40].

Heat map analysis: The visualization of meta-analysis 
results derived from control and treated samples were shown 
in a heat map (Figure 2).

It was also shown that mitochondrial respiratory genes 
were expressed at lower levels within treated samples 
compared to control ones. In current study, it was reported 
that MT-CO1, MT-CO3, MT-ND2, MT-ND4, MT-ND5, MT-ND6, 
and MT-ATP6 were the mitochondrion respiratory genes. MT-
ND genes provide NADH dehydrogenise. This protein is a part 
of a large enzyme complex encoded by the mitochondrial 
genome. Moreover, the dysfunction of MT-ND proteins 
would lead to the electron transport chain disruption and 
ATP production. MT-CO genes encode Cytochrome C Oxidase 
subunits within mitochondria. It is found that they were the 
last enzyme in the mitochondrial electron transport chain for 
ATP synthesis [23]. Findings derived from heat map analysis 
suggested that several candidate genes including ALDOA, 
RPL13, HSPB1, GATA3, KRT18, IGFBP4, and SULF2 were 
associated with the lowest gene expression level in treated 
samples. Aldolase (ALDOA) is known as an oncogene, which is 
a glycolytic enzyme that promotes the metastatic progression 
of cancers [41,42]. It was shown that there was an association 
between ALDOA knock down and proliferation reduction of 

activity of hypo orphic TP53 variants [33]. TP53 is one of the 
most significant tumor suppressor genes, which is commonly 
mutated in various cancers such as breast cancer [34].

It is noteworthy that PROM1, FBN2, and KLHL14 were 
highly down-regulated (Figure 1). Prominin 1 (PROM1or 
CD133) is known as a biomarker of cancer stem cells; 
however, its biological role is not illustrated perfectly [35]. 
Findings showed that there was an association between 
PROM1 levels and malignancy properties stages including 
initiation, progression, and metastasis. Moreover, it was 
reported that PROM1 would contribute to the cell motility 
and invasion, and may affect the malignancy of breast tumors. 
Also, PROM1 genes were highly expressed in TNBC cell lines 
[36,37]. Fibrillin-2 (FBN2) is an extracellular calcium-binding 
micro fibril that contributes to several biological pathways 
including the bone mineralization, osteoblast maturation, 
and calcium binding (UniProtKB: P35556). FBN2 is considered 
as a biomarker of cancers early diagnosis. For example, 
Promotor hypermethylation of FBN2 is associated with 
colorectal cancer as an early event. In fact, Methylation may 
lead to FBN2 down-regulation in primary tumors [38], while 
Kelch-like protein 14 (KLHL14) belongs to Kelch family genes 
and interacts with torsin-1A (UniProtKB: Q9P2G3). It was 
shown that KLHL14 was significantly over-expressed in breast 
cancer compared to normal breast tissues, and had a positive 
relationship with tumor aggressiveness [39]. Moreover, 

         

Figure 1: Results of Volcano plot that visualized the distribution of significant common up and down regulated genes. Volcano plot shows 
the statistical significance (-log10 (P-value)) versus log2 (fold change) value. Also, the up- and down-regulated genes were respectively 
shown in blue and red, while the most statistically significant genes were towards the top of dash line.
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[48,49]. Keratin 18 (KRT18) is a member of the intermediate 
filament family of cytoskeleton protein that is involved in the 
tissue integrity, and its over-expression has been reported 
in many cancers [50]. It was also re-ported that KT18 was 
over-expressed in breast cancer and played a vital role in 
the breast tumorigenesis and tumor dedifferentiation [51]. 
Insulin-like growth factor binding proteins (IGFBPs) would 
regulate many cellular processes such as cell proliferation. 
IGFBPs act as binding proteins for insulin-like growth factor 
(IGF); furthermore, it is evidenced that they play a critical role 
in the cancer progression, especially in breast cancer [52]. 
However, there are various reports regarding their activities 
as oncogene or tumor suppressors. IGFBP5 may be considered 
as an oncogene due to its contribution to metastasis, 
proliferation, and limited responses to endocrine treatment; 
also, it acts as a tumor suppressor because of its apoptotic 
role, anti-metastatic function, and anti-migratory effects 
[53]. Sulphates family, which includes sulfatase1 (SULF1) and 
sulphates 2 (SULF2), plays an important role in the multiple 
biological pathways through regulating the sulfation status 
[54]. It was confirmed that SULF2 would promote the breast 
cancer progression and regulate the tumor-related genes 
expression in breast cancer [55].

breast cancer cells [43]. RPL13 encodes a ribosomal protein, 
which is a component of 60S subunit. Ribosomal proteins 
(RP) expression patterns were implemented as a diagnostic 
strategy in human cancers. Reports of several cancers 
indicated the deregulation of RP expression (e.g.RPL13) [44]; 
therefore, it could be said that RPL13 would be expressed at 
significantly higher levels in benign breast lesions compared to 
that of breast carcinomas (Gene Cards: GC16P089674). HSPB1 
is a member of heat shock proteins, which are considered as 
a large family of proteins with breast cancer behavior [45]. 
It was reported that the down-regulation of HSPB1 protein 
may induce the expression of phosphatase and tensin 
homologue (PTEN) as a tumor suppressor gene. In other 
words, PTEN stabilization depends upon HSPB1 low-level 
expression [46]. GATA binding protein 3 (GATA3) is a highly 
conserved transcription factor that belongs to GATA family 
and leads to the expression of a large number of important 
genes [47]. Furthermore, it contributes to the human growth 
and differentiation cells including the mammary tissue. Lower 
levels of GATA3 expression in breast tumors are associated 
with larger tumors. Therefore, GATA3 is considered as an 
important gene in breast cancer development; however, its 
exact role as an oncogene or tumor suppressor is unclear 

         

Figure 2: The heat map of the of meta-analysis outcomes.
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Discussion
Generally, breast cancer tumors are hormone receptor-

positive with highly estrogen- and progesterone-dependent 
growth rates. Tamoxifen is a type of hormonal therapy 
implemented with the purpose of treating the estrogen 
receptor-positive breast cancer; also, it can decrease the 
risk of invasive cancer development. However, it is able to 
affect the gene expression profile at transcriptome level 
[58]. Results achieved from RNA-seq analysis in MCF7 cell 
line under Tamoxifen therapy revealed that there were 
several candidate genes and biological pathways that 
could result in the tumor suppression and consequently, 
effective treatments. XIAP-associated factor 1 (XAF1) can 
be up-regulated under Tamoxifen therapy; also, it is a 
tumor suppressor that plays a critical role in the apoptosis 
induction and tumor growth inhibition in gastric cancer 
[32]. Interestingly, it was reported that the combination of 
XAF1 with TP53 would act as a modifier. TP53 is a key tumor 
suppressor gene, which is generally mutated in various 
cancers such as breast cancer [33,34]. It was found in current 
study that PROM1 and KLHL14 were down-regulated under 

Gene ontology enrichment analysis: Results derived 
from GO enrichment analysis of DEGs showed that most of 
DEGs were enriched in the regulations of apoptosis and cell 
death pathways (Table 2). Cell cycle damage is considered as 
the main cause of cancer incidence; therefore, the balance 
between proliferation and cell death is disrupted in cancers. 
It was shown that apoptosis inactivation would play a vital 
role in the process of cancer development [56]. Therefore, it 
could be said that significant GO term of apoptosis pathways 
could contribute to cancerous cell death under Tamoxifen 
therapy. Proteolysis is a hydrolysis reaction that occurs when 
peptide bonds and proteins are broken down into smaller 
polypeptides or amino acids. There is an association between 
the metastasis of malignancy tumor and overexpression of 
proteolytic enzyme. More importantly, proteolysis inactivation 
in cancerous tissue plays a critical role in the inhibition of tumor 
invasion, angiogenesis, and migration [57]. Interestingly, our 
findings suggested that negative proteolysis regulation and 
consequent regulations of proteolytic pathways could be 
regarded as considerable GO terms that control the cancer 
under Tamoxifen treatment (Table 2).

Table 2: Results of GO enrichment analysis of common up and down regulated genes.

GO Term Reference genes in 
category Description DGEs count Gene names

0051248 20 Negative regulation of protein 
metabolic process 8 CTSZ, GPX1, GSTP1, IGFBP3, ITM2C, MAGEA2, 

MAGEA3, MECOM

0010941 30 Regulation of cell death 10 CTSZ, GPX1, GSTP1, IGFBP3, MAGEA3, MALT1, 
MECOM, MSX1, PAX8, TRIM2

0030162 6 Regulation of proteolysis 4 CTSZ, GPX1, MAGEA3, MALT1

0032269 17 Negative regulation of cellular 
protein metabolic process 7 CTSZ, GPX1, GSTP1, IGFBP3, MAGEA2, MAGEA3, 

MECOM

0043281 4
Regulation of cysteine-type 
endopeptidase activity involved 
in apoptotic process

7 GPX1, MAGEA3, MALT1

0045861 4 Negative regulation of 
proteolysis 3 CTSZ, GPX1, MAGEA3

0052548 4 Regulation of endopeptidase 
activity 3 GPX1, MAGEA3, MALT1

2000116 4 Regulation of cysteine-type 
endopeptidase activity 3 GPX1, MAGEA3, MALT1

0043067 29 Regulation of programmed cell 
death 9 GPX1, GSTP1, IGFBP3, MAGEA3, MALT1, MECOM, 

MSX1, PAX8, TRIM2

0019904 12 Protein domain specific binding 5 CCN1, CXADR, GPX1, SCNN1A, TCEAL9

0004602 2 Glutathione peroxidase activity 2 GPX1, GSTP1

0070062 49 Extracellular exosome 14
ACSL4, AKR1B1, CRISPLD1, CTSZ, FSTL1, GREB1, 
GSTP1, IGFBP7, ITM2C, LDHB, MSN, PSAT1, RAB34, 
SCNN1A

0043230 50 Extracellular organelle 14
ACSL4, AKR1B1, CRISPLD1, CTSZ, FSTL1, GREB1, 
GSTP1, IGFBP7, ITM2C, LDHB, MSN, PSAT1, RAB34, 
SCNN1A

1903561 50 Extracellular vesicle 14
ACSL4, AKR1B1, CRISPLD1, CTSZ, FSTL1, GREB1, 
GSTP1, IGFBP7, ITM2C, LDHB, MSN, PSAT1, RAB34, 
SCNN1A

0044432 28 Endoplasmic reticulum part 9 ACSL4, COL9A2, CTSZ, FADS2, FSTL1, GJA1, IGFBP3, 
IGFBP7, RCN1
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