

Journal of Brain Disorders

Review Article

DOI: 10.36959/524/335

High Wall Shear Incites Cerebral Aneurysm Formation & Low Wall Shear Stress Propagates Cerebral Aneurysm Growth

Vignarth Shantha Kumar and Vivig Shantha Kumar*

Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, USA

Abstract

Endothelial cells exhibit a variety of structural and functional changes when they come into contact with normal laminar flow. In response to laminar shear stress, endothelial cells modify their potassium ion channels, go through cytoskeletal rearrangements and shape modifications and create prostacyclin. In cerebral arteries, aneurysmal dilatation most frequently starts at locations with substantial wall shear stress, Which include arterial bifurcations and vascular branch sites, where blood flow abruptly switches to turbulent flow. At this point, high shear stress frequently arises, placing increased strain on the vasculature. As the vascular branch points and arterial bifurcations are the initial site of cerebral aneurysm genesis, this helps confirm the role of high wall shear stress in the development of cerebral aneurysms. Low wall shear stress increases the initial proinflammatory effect already present in the vasculature, which furthers the formation of cerebral aneurysms. In fact, regions of aneurysmal regions with low wall shear stress grow more quickly and are more prone to rupture compared to regions with high wall shear stress. Therefore, it seems plausible to assume that turbulent blood flow inside a dilated cerebral aneurysm causes low wall shear stress, thereby encouraging aneurysmal growth.

Keywords

Cerebral aneurysm, Hemodynamic disturbances, Wall shear stress, Aneurysmal growth, Aneurysmal rupture

Introduction

A confined, outward pathological dilatation of the artery wall, cerebral aneurysms (CA) are thought to affect 1-3% of people in the general population [1]. Cerebral aneurysm development and growth follows an amalgamation of multiple insults with individual contributions from hemodynamic stress and inflammatory pathways [2,3]. Substantial clinical and experimental experience demonstrate a role of hemodynamic influences in cerebral aneurysm pathogenesis, suggesting that altered hemodynamics modulate a biphasic response defined by early initial cerebral aneurysm formation and later cerebral growth [4-8]. A series of actions connected to stages of arterial wall remodeling in response to hemodynamic stresses is represented by the initiation, growth, and rupture of cerebral aneurysms [9,10]. Hemodynamic induced endothelial dysfunction is a starting point for the development of cerebral aneurysms. Varying patterns of blood flow exert mechanical stresses on vascular endothelial cells, altering the functions of these cells and predisposing to vessel wall changes [11-14]. The primary hemodynamic cause of cerebral aneurysm growth, formation, and rupture is wall shear stress. High shear stress in arterial branch points and bifurcations coincides with histological markers of nascent cerebral aneurysm formation [15,16].

Cerebral vessels at these locations commonly demonstrate early destructive vessel wall changes such as, most commonly, damage to endothelial cells with signs of either altered protective endothelial cell phenotype or endothelial cell loss and fragmentation of the internal elastic lamina. Low wall shear stress, on the other hand, is commonly observed at the growing end of cerebral aneurysms such as the neck and dome regions of cerebral aneurysms [17,18]. These regions are observed to demonstrate marked inflammatory vessel wall remodeling demonstrated by increased macrophage tissue trafficking, release of macrophage derived products (MMPs), & loss of smooth muscle cells.

As such, our main objective in this study is to understand

*Corresponding author: Vivig Shantha Kumar, Department of Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, USA

Accepted: April 18, 2023

Published online: April 20, 2023

Citation: Kumar VS, Kumar VS (2023) High Wall Shear Incites Cerebral Aneurysm Formation & Low Wall Shear Stress Propagates Cerebral Aneurysm Growth. J Brain Disord 4(1):82-91

Copyright: © 2023 Kumar VS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

the contributions of varying hemodynamic perturbations toward the development and growth of cerebral aneurysms.

Review

Vasculoprotective effect of normal laminar shear stress

Under physiological states, cerebral blood vessels display a laminar flow pattern. Laminar flow refers to a unidirectional, orderly pattern characterized by parallel vectors [1]. In order to control a number of vascular processes, endothelial cells' reactions to normal fluid shear stress are crucial. Endothelial cells that are subjected to a typical laminar flow and typical WSS show a number of structural and functional modifications. Under normal physiological laminar shear stress, endothelial cells adopt an anti-inflammatory and nonproliferative surface expression characterized by increased resistance to inflammation, growth, and apoptosis [19].

Shear stress modulates vascular tone through its influence on the production of nitric oxide [20,21]. Endothelial nitric oxide synthase modulates local production of nitric oxide and is activated through phosphorylation of protein kinase B in response to laminar stress, leading to upregulation of eNOS activity [22,23]. Besides upregulating eNOS activity through protein kinase B phosphorylation, laminar wall shear stress induces continuous eNOS mRNA transcription through the c-Src-dependent pathways [24]. Additionally, in endothelial cell cultures, laminar shear stress induces Kruppel-like factor 2, which contributes to NO-dependent vasodilation [25,26]. Endothelial cell over expression of KLF2 abundantly induces endothelial nitric oxide synthase expression [27,28]. Laminar fluid shear stress mediates an antithrombotic and anti-inflammatory effect through the upregulation of Kruppel-like factor-2 [29,30]. Induced by laminar shear stress, KLF-2 reduced the expression of the pro-inflammatory adhesion molecules vascular cell adhesion molecule-1 and E-selectin in endothelial cells [31]. Further, endothelial cells introduced with KLF2 were found to display decreased attachment of white blood cells in vitro flow assay studies [31]. Likewise, expression of the nuclear factor kappa beta ligand is downregulated [32,33]. Decreased expression of NF-KB, a proinflammatory transcription factor, minimizes the development of a proinflammatory extracellular environment within the vascular wall. Also, laminar shear stress mediates antithrombotic responses through KLF2. Endothelial cells in normal vessels adapt an anticoagulant response to laminar shear stress by upregulating thrombomodulin, heparin sulfate, and tissue factor inhibitor [34]. The expression of thrombomodulin is also continuously increased by laminar shear stress, but it increases by a factor of two more than it does in normal cells [35]. Furthermore, shear stress increases endothelial expression of tissue plasminogen activators while suppressing plasminogen activator inhibitor type 1 release [36].

Laminar shear stress also promotes cell cycle arrest in the G1 or G0 phase, which keeps endothelial cells in a quiescent condition [33]. Endothelial cell intracellular processes such as gene transcription, protein synthesis, cell proliferation and

ultimately cytoskeletal rearrangement and morphological changes are also regulated by normal physiological shear stress [37,38]. The mitogen-activated protein kinase family of proteins is one of the most significant signaling pathways mediating endothelial cell proliferative response to laminar wall shear stress [39,40]. MAPK proteins- ERK ½, p38 and JNK-activated in response to shear stress facilitate conduct of extracellular signals into the cell nucleus, where they influence gene transcription [22,41,42]. The net effect of MAPK activation is the ultimate activation of ERK ½ leading to protein synthesis, cell proliferation and an inhibition of apoptosis [43-45]. Additionally, cyclin dependent-kinase, responsible for vascular endothelial cell proliferation, is suppressed [22]. Repression of endothelial cyclin dependent kinase prevents aberrant cell proliferation resulting in a healthy balance between proliferation between maintenance. Moreover, the antimitotic pathway of AMPK and the proliferative pathway of AKT is simultaneously activated. Dual activation of both the AMPK/AKT pathway maintains a balanced expression of mTOR signaling, a molecular pathway governing vascular endothelial cell proliferation [46]. Ultimately, through these molecular signaling pathways, endothelial cells remain in a quiescent antiproliferative state secondary to an arrest of the cell cycle in either the G1 or G0 phase promoting indefinite endothelial cell survival.

Vascular Endothelial Cell Structural Changes in Response to High Shear Stress. The frequent occurrence of cerebral aneurysms in vascular branch points and bifurcation points emphasizes the significance of hemodynamic stresses in the beginning of cerebral aneurysm formation [47-51]. Indeed, there is a higher prevalence of cerebral aneurysms in association with morphological abnormalities of the cerebral vasculature, such as hypoplasia/occlusion of a section of the circle of Willis or arteriovenous malformations that provide elevated flow patterns and high wall shear stress locally [47,52-55]. Aneurysmal dilation of cerebral vessels most commonly begins at sites of high wall shear stress. High wall shear stress commonly develops at arterial vascular branch points and arterial bifurcations, where blood flow suddenly changes from the steady uniform laminar pattern into a more chaotic turbulent pattern exerting greater tension on the vascular wall. Several pieces of animal studies highlight a central role of altered hemodynamics in the initiation of cerebral aneurysm formation. Elevation of the wall shear stress beyond threshold conditions, from observations in several animal models, document histopathological vascular wall changes suggestive of early CA formation: Fragmentation of the internal elastic lamina and endothelial cell phenotype modulation [48,56]. From histopathological examination of affected cerebral blood vessels, Steiger, et al., deduced that experimentally induced sustained elevations of WSS are attended by a fragmentation of the internal elastic lamina of blood vessels [56]. Similarly, Stehbens, et al., noted that, in addition, endothelial cells show an alteration in their normal phenotype as well as endothelial damage [48]. Gao, et al., using a rabbit model, demonstrated a drastic 9 fold increase in basilar artery flow following ligation of the common carotid artery. Additionally, newly formed cerebral aneurysms were noted at the basilar artery bifurcation, characterized

histologically by a loss of the internal elastic media and an outward bulged and thinned tunica media [57]. Dog's carotid arteries were ligated experimentally to create new branch points, and Meng, et al., [58] observed remodulative changes at these bifurcations that resembled the beginning of an intracranial aneurysm, including disruption of the internal elastic lamina, loss of medial SMCs, and a decreased proliferation of SMCs [59]. Further, Jamous, et al., studied cerebral aneurysm occurring at high flow bifurcation sites and documented endothelial cell morphological alterations of during the early phase of aneurysm development. In the early phase of cerebral aneurysm development, endothelial cells were observed to have an abnormal endothelial cell morphology ranging from segmental detachment of the endothelial cell plasma membrane to endothelial cell deformation with a vacuolated cytoplasm and/or nucleus depending on the degree of destructive remodeling [60]. Fukada, et al., similarly observed that high wall shear incites CA formation and endothelial cell injury at sites of nascent CA formation similarly corresponds to endothelial cell structural modifications as described by Jamous. One such study performed by Fukada, et al., correlated aneurysmal degenerative changes in endothelial cells with the magnitude of wall shear stress in variable areas of the cerebral blood vessel. Herein, it was discovered that in the region of the vessel bifurcation, the intimal endothelial cells showed characteristic initial changes suggestive of early progression to aneurysm dilation. Given the bifurcation of the vessels at this site, it was noted that the intima of these vessels experienced the highest magnitude of wall shear stress [61]. Along the same lines, observations from animal studies still further strengthen the positive correlation between a high WSS and early aneurysmal changes. Moreover, in experimental models of cerebral aneurysm formation in rats and primates, increased cerebral blood flow and hypertension were necessary prerequisites for aneurysmal dilation [50,62-64]. In general, these studies conclude that aneurysm initiation starts with deranged initial endothelial cell responses leading to structural and functional modifications of the endothelium.

Activation of endothelial cell proinflammatory response by high wall shear stress flow acceleration at bifurcation points produces a hemodynamic environment characterized by high wall shear stress which triggers initiation of aneurysmal dilation. In experimental models of cerebral aneurysms, increased cerebral blood flow and systemic hypertension are necessary prerequisites for the initiation of CA formation [4,15-17]. Likewise, Kulcsar, et al., analyzed the hemodynamics of a cerebral vasculature in 3 patients before and after the development of an intracranial aneurysm and observed that IA consistently formed at locations characterized by high WSS [65]. Further, Metaxa, et al., using rabbit models noted the occurrence of nascent aneurysm formation at the basilar terminus region following basilar artery flow increase, a region of elevated wall shear stress [66]. High wall shear stress is exceedingly implicated in destructive vessel remodeling and endothelial cells at arterial bifurcations, suggested by the fact that vascular branch points and apices become progressively dysfunctional following prolonged abnormal hemodynamic stresses [19]. Increased wall shear and excessive hemodynamic stresses activate endothelial cell mechanoreceptors leading to increased signal transduction and activation of inflammatory pathways leading to destructive inflammatory vessel wall remodeling. High wall shear stress, however, evokes a proinflammatory, procoagulative and proliferative phenotype predisposing to vascular remodeling. Activation of nuclear factor KB, a proinflammatory transcription factor, in endothelial cells challenged with hemodynamic stress activates inflammatory signaling pathways leading to CA initiation [67] NF-Kb, a proinflammatory transcription factor, is activated by increased shear stress on endothelial cells, regulating the expression of various proinflammatory genes [68-72]. In vivo experimental models of cerebral aneurysms observed that increased flow and hypertension are necessary prerequisites for NF-KB activation in rat models of aortic aneurysms [73]. In response to turbulent flow, NF-KB activation occurs predominantly in the endothelial cells and macrophages. In quiescent unstimulated cells, NF-KB is tucked away in the cytoplasm in combination with inhibitor IKB proteins, preventing its translocation into the nucleus. Appropriate activating signals phosphorylate IKB, acting to abborate the inhibitory antimigratory influence of IKB. NF-kB subsequently translocates to the nucleus to evoke the transcription of proinflammatory genes [67]. Cultured endothelial cells demonstrate increased nuclear translocation of NF-KB in response to fluid shear stress by activating IKB kinase through phosphorylation [74]. Further, use of antibody directed against the p65 nuclear localization signal subunit of NF-kB demonstrated increased localization and activation of NF-KB in the arterial walls with the use of immunohistochemical studies [Schneider A] [75]. Likewise, use of immunostaining and western-blot analysis techniques confirmed that NF-KB was significantly phosphorylated and activated in the vascular endothelial cells and macrophages during the initiation of cerebral aneurysms in murine rat models of cerebral aneurysm [76-78]. Animal models clearly advocate that NF-KB activation at the site of vascular injury is necessary for the formation of intracranial aneurysms. Mice devoid of nuclear factor kB expression were observed to have a significant blockade of aneurysm formation. NF-KB plays a critical developmental role in the genesis of nascent cerebral aneurysms by regulating the transcription of downstream pro-inflammatory genes leading to phenotypic alterations of the vascular endothelium [79,80]. The major downstream target of NF-kB following activation is the upregulation of proinflammatory adhesion molecules, VCAM-1 and MCP-1, on the vascular endothelium leading to increased neutrophil and macrophage tissue trafficking. Macrophage infiltration results in the release of matrix metalloproteinases, MMP-2 and MMP-9, capable of proteolytically degrading the extracellular matrix as well as the induction of iNOS leading to the pathological formation of nitric oxide mediating vascular smooth muscle cell apoptosis (Table 1).

Growing & thin end of cerebral aneurysms demonstrate low wall shear stress

Evidence implicating low wall shear stress in the growth of cerebral aneurysm development is suggested by several studies. Cerebral, et al., initially inferred that local propagation

References	Wall shear stress	Pattern of growth vessel wall o	hanges
Steiger [56]	High WSS	Initiation of CA Formation	Fragmentation of Internal Elastic Lamina
Stehbens [48]	High WSS	Initiation of CA Formation	Loss of normal phenotype of formation endothelial cells and endothelial damage
Meng [59]	High WSS	Initiation of CA Formation	Internal elastic lamina disruption
			Medial smooth muscle cells are lost
			Reduced vascular smooth
			muscle cell proliferation
			Decrease in fibronectin
Fukada [61,114]	High WSS	Initiation of CA Formation	Fragmentation of endothelial cell plasma membrane
			Endothelial cell vacuolization
			Endothelial cell damage
			with/without nuclear and
			cytoplasmic vacuolization
Jamous [115]	High WSS	Initiation of CA Formation	Fragmentation of endothelial cell plasma membrane
			Endothelial cell vacuolization
			Endothelial cell damage
			with/without nuclear and
			cytoplasmic vacuolization
Wang [116]	High WSS	Initiation of CA Formation	Endothelial Cell Loss
Kolega J [80]	High WSS	Initiation of CA Formation	Endothelial Cell Damage Endothelial Cell turnover
			MMP production by mural cells
			Mural Cell Apoptosis
Dolan JM [117]	High WSS	Initiation of CA Formation	Endothelial Cell Turnover
Meng H [59]	High WSS	Initiation of CA Formation	ECM degradation
			Medial Thinning
Hoi [118]	High WSS	Initiation of CA Formation	MMP production by ECs
Fukada & Aoki [114]	High WSS	Initiation of CA Formation	NF-κB & COX-2 increased
Pawlowska [119]	High WSS	Initiation of CA Formation	IL-1β increased
Taylor, et al., [120]	High WSS	Initiation of CA Formation	Migration of SMC from media to intima; change of SMC phenotype from contractile to secretory, w/ MMP production by SMC
Shi & Tarbell [121]	High WSS	Initiation of CA Formation	PDGF & FGF-2 released from SMCs
Papadaki [122]	High WSS	Initiation of CA Formation	Increased tPA production

 Table 1: High Wall Shear Stress: Summary of hemodynamic pattern, growth rate, and vascular wall changes.

and growth of cerebral aneurysms is driven by interactions between regional blood flow and the vascular wall. Several experimental *in-vitro* studies, subsequently, collectively agree on low blood flow velocity as a critical driving force [17,81,82]. Watton, et al., observed continuous enlargement of the growing end of cerebral aneurysms due to a low wall shear stress following an initial aneurysmal bulge enlargement [83]. Teteshima, et al., using middle cerebral aneurysms with the development of an enlarged bleb measured local wall shear stress patterns and observed that the enlarged bleb end of a growing aneurysm displayed low wall shear stress [84]. Likewise, Kadasi, et al., using computational fluid dynamic models of 16 cerebral aneurysms identified during surgery noted that the occurrence of low wall shear stress

coincided with the thinner growing regions of the aneurysmal wall [85]. Shojma, et al., in his computational analysis of 20 cerebral aneurysms affecting human middle cerebral arteries consistently observed that low wall shear stress was noted at the apex of the cerebral aneurysm, a region of the aneurysm corresponding to the height of aneurysmal growth [4]. Similar conclusions regarding the relationship between wall shear stress and aneurysmal growth was explored by Boussel, et al., who suggested that regions of the cerebral aneurysm with low wall shear stress experienced higher rates of aneurysmal growth compared to regions of the cerebral aneurysm with high wall shear stress, which experienced lower rates of aneurysmal growth [86]. Further observations highlighting the contribution of low wall shear stress in the propagation and increase in size of cerebral aneurysms comes from Skodvin, et al., study of the relationship between low wall shear stress and the risk of rupture. Here, it was observed that cerebral aneurysms that displayed larger areas of low wall shear stress were more likely to rupture, indirectly suggesting a positive correlation between low wall stress and aneurysmal size [87].

Further examination of the molecular cross-talk between low blood flow velocity and cerebral aneurysm growth is linked to structural changes of vascular endothelial cells. Endothelial cells, exposed to patterns of low wall shear stress, are characterized by decreased cell-cell adhesion, endothelial cell loss and thrombus formation, necessary prerequisites for the structural weakening of the aneurysmal wall [86,88,89]. After initiation of cerebral aneurysm formation, the region of blood vessels exposed to high wall shear stress demonstrates fragmentation and loss of the IEL mediated by matrix metalloproteinases [56,59]. Given the fact that the internal elastic lamina contributes significantly to the structural integrity of the vessel wall, destruction of the IEL leads to an initial outward bulge creating local flow patterns of stagnant flow and low wall shear stress. Aneurysmal bulge development exposes the growing end of the aneurysmal sac to low wall shear stress, accelerating the previously initiated proinflammatory response by the vascular endothelium in response to high WSS. The predominance of low wall shear stress in high growth regions of cerebral aneurysms defines a dominant function of low wall shear stress in the continued growth and expansion of cerebral aneurysms, however, studies highlighting plausible molecular mechanisms governing this growth are relatively sparse [4,83-86].

Endothelial cells exposed to sustained periods of low WSS respond by increasing proliferation of endothelial cells, triggering apoptosis of endothelial cells, upregulating proinflammatory and procoagulant mediators, increasing production of vasoconstrictive agents and decreasing production of vasodilatory mediators and antioxidative agents [81]. The ensuing endothelial dysfunction triggers the upregulation of adhesion molecules (VCAM-1 and ICAM-1) and proinflammatory cytokines (TNF-Alpha, Interleukin 1) and reactive oxygen species on the luminal cell surface [86,90]. Further, low wall shear stress increases endothelial expression of NF-KB ligand, a proinflammatory transcription factor. Increased transcription of the NF-KB pathway provides for increased adhesion and infiltration of leukocytes to the vascular endothelium. Leukocyte trafficking into the arterial wall allows for the release of proteases and proinflammatory cytokines that degrade the structural matrix and induce vascular smooth muscle apoptosis [91]. The weakened media in the arterial wall subsequently facilitates aneurysmal dilation under low wall shear stress. Additionally, low wall shear stress reduces mechanical stimulation and deformation of the vascular endothelium, resulting in a impaired synthesis and secretion of nitric oxide from the endothelium. Decreased expression of nitric oxide on the intimal surface promotes vasoconstriction and platelet aggregation [92,93]. Consequently, increased inflammatory cell adhesion as well as aggregation of red blood cells and platelets damages the intima, resulting in intimal inflammation [94,95]. As such, following injury inflammation of the intima, upregulation of inflammatory cell adhesion proteins is subsequently attended by increased leukocyte trafficking into the vascular wall. In contrast to a high wall shear stress environment not favorable for tissue trafficking of leukocytes due to insufficient residence time in the vasculature, a low wall shear facilitates leukocyte transmigration due to the presence of a pro adhesive endothelium in conjunction with increased residence time in the vasculature [96] The resulting inflammatory cell infiltrates structurally degrades the extracellular matrix by releasing matrix metalloproteinases (MMP-2 and MMP-9). Additionally, following aneurysm initiation, the dome experiences low levels of wall shear stress as a result of regional blood flow stagnation. Local stagnation of blood flow prevents shear stress-induced eNOS action leading to a dysfunction of flow induced nitric oxide synthesis. Decreased synthesis of endothelial derived nitric oxide triggers apoptosis of vascular smooth muscle cells setting into motion, the process of vessel wall remodeling [61,97-99].

Collectively these studies suggest that areas of an cerebral aneurysm displaying low wall shear stress experience greater rates of growth and are more prone to rupture compared to areas of an aneurysm that display high wall shear stress. So, it is safe to assume that low wall shear stress generated by turbulent blood flow within a dilated cerebral aneurysm functions to propagate aneurysmal growth.

Low wall shear stress enhances inflammatory cell accumulation & endothelial cell loss contribute to vessel wall weakening and rupture

Low levels of wall shear stress evoke a proinflammatory endothelial cell phenotype leading to aneurysmal growth, progression and rupture. In response to a laminar, physiological level of shear stress, endothelial cells adopt a nonproliferative and noninflammatory phenotype. Following initiation of nascent cerebral aneurysm formation, aneurysmal dilation creates turbulent flow patterns characterized by fewer organized parallel flow vectors, exposing the endothelium of the growing sac to lower wall shear stress. Low wall shear inside the growing end of the aneurysmal sac evokes a atherogenic response by promoting expression of a proinflammatory endothelial cell phenotype [100-102]. Moreover, low wall shear modifies the secretory response of endothelial cells, characterized by decreased

production of vasodilators (nitric oxide and prostacyclin) and antioxidants (superoxide dismutase) and increased production of vasoconstrictors (endothelin-1), reactive oxygen species and proinflammatory cytokines - TNF-alpha and IL-1B) [81]. Endothelial cells increase synthesis and release of reactive oxygen species and proinflammatory cytokines and upregulate proinflammatory cell surface adhesion molecules (VCAM-1, ICAM-1) on the luminal cell surface [96]. Further, low shear stress facilitates apoptosis of endothelial cells with a weakening of the aneurysmal wall. Indeed, in a comparative study between ruptured and unruptured cerebral aneurysms, ruptured cerebral aneurysms were observed to show increased rates of apoptosis [103,104]. Moreover, areas of low wall shear stress coincided with thin wall regions of the cerebral aneurysm such as the dome. The net outcome achieved is increased inflammatory cell infiltration, matrix metalloproteinase production, smooth muscle cell proliferation and migration leading to weakening of the vessel wall and aneurysmal rupture [59].

Building on this, lymphocytes play a vital role in the rupture of aneurysms [11]. T-lymphocytes propagate the destructive inflammatory process through the elaboration of proinflammatory cytokines (TNF and IFN-gamma) leading to activation of macrophages, B-lymphocytes and upregulation of surface adhesion molecules. Sawyer, et al., observed that following initiation of intracranial aneurysms in experimental hypertension molecules, lymphocyte depleted mice developed significantly fever aneurysms compared to lymphocyte rice mice [105]. In addition, lymphocyte release of IFN-gamma, a potent inducer of macrophage activation, determines the course of aneurysmal growth and rupture [11,106]. In a comparative study, macrophage infiltration was shown to be significantly correlated with an increased risk of rupture in ruptured cerebral aneurysms compared to unruptured cerebral aneurysms [107-109]. Further, macrophage derived proteases- matrix metalloproteinase 1,2 and 9- are consistently over expressed in aneurysmal walls and ruptured aneurysms show a higher expression of MMP-2 and MMP-2 compared to unruptured aneurysms [108]. Similarly, Sawyer, et al., demonstrated that lymphocyte depleted mice had lower levels of MMP-2 and MMP-9 compared to lymphocyte rich mice and consequently had lower risk of cerebral aneurysm rupture [105]. Kukri, et al., in a comparative study between ruptured and unruptured cerebral aneurysm models using oligonucleotide microarrays to analyze endothelial cell gene expression in varying hemodynamic stress observed increased inflammatory cell chemotaxis and leukocyte trafficking, oxidative stress, extracellular matrix degradation and destructive vascular remodeling in ruptured aneurysms as opposed to unruptured aneurysms [110]. Apart from mediating proinflammatory changes on the vessel wall, low wall shear stress exerts detrimental vascular wall remodeling changes by influencing endothelial cell expression of nitric oxide. In response to low wall shear stress, endothelial cells suppress expression of endothelial-derived nitric oxide [111]. Given the vital role of nitric oxide in vascular physiology such as regulation of vascular tone, inhibition of smooth muscle cell proliferation, decreased production of proinflammatory mediators, loss of nitric oxide has detrimental effects of aneurysmal growth [112]. Aneurysmal wall devoid of adequate nitric oxide production displays increased oxidative stress due to an increase in oxidase activity unbalanced by appropriate superoxide scavenger activity [113].

Ultimately, in regions of the vessel wall displaying atherosclerotic and hyperplastic changes as well in aneurysmal rupture, low wall shear stress was demonstrated, highlighting a pivotal role of low wall shear stress in inducing a proinflammatory atherogenic response culminating in vessel wall weakening and subsequent aneurysmal rupture (Table 2).

References	Wall Shear Stress	Pattern of Growth Vessel Wal	l Changes
Tateshima [84]	Low WSS	Growth and expansion of CA	Not Assessed
Shojma [4]	Los WSS	Growth and expansion of CA	Not Assessed
Boussel [86]	Low WSS	Growth and expansion of CA	Disorganization of endothelium, increased production of vasoconstrictive & inflammatory agents; increased apoptosis of ECs
Skodvin [87]	Low WSS	Growth and expansion of CA	Not Assessed
Malek [123]	Low WSS	Growth and expansion of CA	Endothelial Cell upregulation of ICAM, VCAM, Interleukin 1, Reactive Oxygen Species
Qiu T [124]	Low WSS	Growth and expansion of CA	Increased Inflammatory cell infiltration
Chiu JJ	Low WSS	Growth and expansion of CA	Increased reactive oxygen species formation
Galis [125]	Low WSS	Growth and expansion of CA	MMP production by macrophages
Ross R [99]	Low WSS	Growth and expansion of CA	SMC proliferation and migration
			Thrombus formation
Lu & Kassab [126]	Low WSS	Growth and expansion of CA	Decreased production of PGI2, leading to atherosclerotic changes; increased oxidative stress
Zhou [127]	Low WSS	Growth and expansion of CA	Increased selectin-mediated leukocyte rolling
Papadaki [122]	Low WSS	Growth and expansion of CA	Decreased tPA production
Turjman [96]	Low WSS	Growth and expansion of CA	Reorganized ECs w/ cuboidal shape; promoted thrombosis & leukocyte adhesion

Table 2: Low wall shear stress: Summary of hemodynamic pattern, growth rate, and vascular wall changes

Conclusion

It has been discovered that cerebral aneurysm regions with low wall shear stress expand faster and are more likely to burst than those with high wall shear stress. Consequently, it is plausible to infer that low wall shear stress, which in turn promotes aneurysmal growth, is caused by turbulence in the blood flow within a dilated cerebral aneurysm. The preponderance of low wall shear stress in high growth regions of cerebral aneurysms suggests that low wall shear stress plays a prominent role in the continuing growth and expansion of cerebral aneurysms; nevertheless, Research showing probable molecular processes behind this growth is rare. Low wall shear stress contributes to the formation and expansion of cerebral aneurysms, starting with its effects on vascular endothelial cells. In response to sustained low WSS, endothelial cells multiply more, cause death in endothelial increase pro-inflammatory and cells, procoagulant mediators, produce more vasoconstrictive agents, and decrease the production of antioxidative and vasodilatory mediators, culminating in a destructive cascade of vessel wall remodeling unable to tolerate hemodynamic stresses leading to aneurysmal growth and eventual rupture.

Acknowledgments

The Author declares that there are no acknowledgements.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest

None.

References

- 1. Sheinberg DL, McCarthy DJ, Elwardany O, et al. (2019) Endothelial dysfunction in cerebral aneurysms. Neurosurg Focus 47: E3.
- 2. Brisman Jonathan L, Song JK, Newell DW, et al. (2006) Cerebral Aneurysms. New England Journal of Medicine 355: 928-939.
- Schievink WI (1997) Intracranial aneurysms. N Engl J Med 336: 28-40.
- 4. Shojima M, Oshima M, Takagi K, et al. (2004) Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35: 2500-2505.
- 5. Jou LD, Lee DH, Morsi H, et al. (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 29: 1761-1767.
- Castro M, Putman C, Radaelli A, et al. (2009) Hemodynamics and rupture of terminal cerebral aneurysms. Academic Radiology 16: 1201-1207.
- 7. Sforza DM, Putman CM, Cebral JR (2009) Hemodynamics of cerebral aneurysms. Ann Rev Fluid Mech 41: 91-107.
- 8. Takao H, Murayama Y, Otsuka S, et al. (2012) Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43: 1436-1439.
- 9. Hoh BL, Rabinov JD, Pryor JC, et al. (2004) A modified technique

for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochir 146: 705-711.

- 10. Tada Y, Kanematsu Y, Kanematsu M, et al. (2011) A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl 111: 31-35.
- 11. Chyatte D, Bruno G, Desai S, et al. (1999) Inflammation and intracranial aneurysms. Neurosurgery 45: 1137-1146.
- Frosen J, Piippo A, Paetau A, et al. (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35: 2287-2293.
- 13. Hashimoto T, Meng H, Young WL (2006) Intracranial aneurysms: links among inflammation, hemodynamics, and vascular remodeling. Neurol Res 28: 372-380.
- 14. Aoki T, Kataoka H, Ishibashi R, et al. (2008) Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Intl J Mol Med 22: 595-603.
- 15. Valencia A, Morales H, Rivera R, et al. (2008) Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index. Med Eng Phys 30: 329-340.
- 16. Rhoton Jr AL (2002) Aneurysms. Neurosurgery 51: S121-S158.
- 17. Tanoue T, Tateshima S, Villablanca JP, et al. (2011) Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol 32: 1732-1737.
- 18. Kadirvel R, Ding YH, Dai D, et al. (2007) The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49: 1041-1053.
- 19. Soldozy S, Norat P, Elsarrag M, et al. (2019) The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture. Neurosurg Focus 47: E11.
- 20. Marletta MA (1989) Nitric oxide: Biosynthesis and biological significance. Trends Biochemical Science 14: 488-492.
- 21. Nishida K, Harrison DG, Navas JP, et al. (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90: 2092-2096.
- 22. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38: 1949-1971.
- 23. Go YM, Boo YC, Park H, et al. (2001) Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol 91: 1574-1581.
- 24. Davis Michael E, Cai H, Harrison DG, et al. (2001) Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circulation Research 89: 1073-1080.
- 25. Slater SC, Ramnath RD, Uttridge K, et al. (2012) Chronic exposure to laminar shear stress induces Kruppel-like factor 2 in glomerular endothelial cells and modulates interactions with co-cultured podocytes. Int J Biochem Cell Biol 44: 1482-1490.
- 26. Gracia-Sancho J, Russo L, García-Calderó H, et al. (2011) Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60: 517-524.

- 27. Dekker RJ, Boon RA, Rondaij MG, et al. (2006) KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107: 4354-4363.
- 28. Napoli C, de Nigris F, Williams-Ignarro S, et al. (2006) Nitric oxide and atherosclerosis: An update. Nitric Oxide 15: 265-279.
- 29. Fledderus JO, van Thienen JV, Boon RA, et al. (2007) Prolonged shear stress and KLF2 suppress constitutive pro-inflammatory transcription through inhibition of ATF2. Blood 109: 4249-4257.
- Parmar KM, Larman HB, Dai G, et al. (2006) Integration of flowdependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116: 49-58.
- 31. SenBanerjee S, Lin Z, Atkins GB, et al. (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199: 1305-1315.
- 32. Eng E, Ballermann BJ (2003) Diminished NF-kappaB activation and PDGF-B expression in glomerular endothelial cells subjected to chronic shear stress. Microvasc Res 65: 137-144.
- Lin K, Hsu PP, Chen BP, et al. (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97: 9385-9389.
- 34. Xu S, Xu Y, Yin M, et al. (2018) Flow Dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics 8: 3007-3021.
- Lin Z, Kumar A, Senbanerjee S, et al. (2005) Kruppel like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96: e48-e57.
- 36. Takada Y, Shinkai F, Kondo S, et al. (1994) Fluid shear stress increases the expression of thrombomodulin by cultured human endothelial cells. Biochem Biophys Res Commun 205: 1345-1352.
- 37. Diamond SL, Eskin SG, McIntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483-1485.
- Gaucher C, Devaux C, Boura C, et al. (2007) In vitro impact of physiological shear stress on endothelial cells gene expression profile. Clin Hemorheol Microcirc 37: 99-107.
- Dewey CF, Bussolari SR, Gimbrone MA, et al. (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103: 177-185.
- 40. Yoshizumi M, Abe J, Tsuchiya K, et al. (2003) Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 91: 172-176.
- 41. Yan C, Takahashi M, Okuda M, et al. (1999) Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J Biol Chem 274: 143-150.
- 42. Tseng H, Peterson TE, Berk BC (1995) Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells Circ Res 77: 869-878.
- Jo H, Sipos K, Go Y-M, et al. (1997) Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells J Biol Chem 272: 1395-1401.
- 44. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85: 9-23.

- 45. Dardik A, Chen L, Frattini J, et al. (2005) Differential effects of orbital and laminar shear stress on endothelial cells. J Vasc Surg 41: 869-880.
- 46. Akimoto S, Mitsumata M, Sasaguri T, et al. (2000) Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/ Waf1). Circ Res 86: 185-190.
- 47. Kayembe KNT, Sasahara M, Hazama F (1984) Cerebral aneurysms and variations of the circle of Willis. Stroke 15: 846-850.
- 48. Stehbens WE (1989) Etiology of intracranial berry aneurysms. J Neurosurg 70: 823-831.
- 49. Gonzalez CF, Cho YI, Ortega HV, et al. (1992) Intracranial aneurysms: flow analysis of their origin and progression. AJNR Am J Neuroradiol 13: 181-188.
- 50. Kondo S, Hashimoto N, Kikuchi H, et al. (1997) Cerebral aneurysms arising at nonbranching sites: an experimental study. Stroke 28: 398-403.
- 51. Foutrakis GN, Yonas H, Sclabassi RJ (1999) Saccular aneurysm formation in curved and bifurcation arteries. AJNR Am J Neuroradiol 20: 1309-1317.
- 52. Matsuda M, Handa J, Saito A, et al. (1983) Ruptured cerebral aneurysms associated with arterial occlusion. Surg Neurol 20: 4-12.
- 53. Salar G, Mingrino S (1977) Ligature of the cervical carotid artery for the treatment of intracranial carotid aneurysms: complications and late results. Acta Neurochir (Wein) 36: 152.
- 54. Yasargil MG (1984) Microneurosurgery. Vol. 2. New York: Georg Thieme Verlag.
- Peerless SJ, Drake CG (1982) Management of aneurysms of the posterior circulation. In: Youmans JR, Neurological Surgery. New York: Saunders, 1715-1763.
- 56. Steiger HJ (1990) Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir (Wein) 48: 1-57.
- 57. Gao B, Baharoglu MI, Cohen AD, et al. (2012) Y-stent coiling of basilar bifurcation aneurysms induces a dynamic angular vascular remodeling with alteration of the apical wall shear stress pattern. Neurosurgery 72: 617-629.
- 58. Meng H, Tutino VM, Xiang J, et al. (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35: 1254-1262.
- 59. Meng H, Wang Z, Hoi Y, et al. (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38: 1924-1931.
- 60. Jamous MA, Nagahiro S, Kitazato KT, et al. (2005) Vascular corrosion casts mirroring early morphological changes that lead to the formation of saccular cerebral aneurysm: An experimental study in rats. J Neurosurg 102: 532-535.
- 61. Fukuda S, Hashimoto N, Naritomi H, et al. (2000) Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 101: 2532-2538.
- 62. Hashimoto N, Handa H, Nagata I, et al. (1980) Experimentally induced cerebral aneurysms in rats: Part V. Relation of hemodynamics in the circle of Willis to formation of aneurysms. Surg Neurol 13: 41-45.
- 63. Kim C, Kikuchi H, Hashimoto N, et al. (1989) Establishment

of experimental conditions for inducing saccular cerebral aneurysms in primates with special reference to hypertension. Acta Neurchir (Wein) 96: 132-136.

- 64. Nagata I, Handa H, Hashimoto N, et al. (1980) Experimentally induced cerebral aneruysms in rats: VI, hypertension. Surg Neurol 14: 477-479.
- 65. Kulcsar Z, Ugron A, Marosfoi M, et al. (2011) Hemodynamics of cerebral aneurysm initiation: The role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol 32: 587-594.
- 66. Metaxa E, Tremmel M, Natarajan SK, et al. (2010) Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41: 1774-1782.
- 67. Aoki T, Nishimura M, Matsuoka T, et al. (2011) PGE2-EP2 signaling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-kB. Br J Pharmacol 163: 1237-1249.
- 68. Orr AW, Sanders JM, Bevard M, et al. (2005) The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 169: 191-202.
- 69. Lan QX, Mercurius KO, Davies PF (1994) Stimulation of transcription factors Nf-Kappa-B and Ap1 in endothelial-cells subjected to shear-stress. Biochem Biophys Res Commun 201: 950-956.
- 70. Khachigian LM, Resnick N, Gimbrone MA Jr, et al. (1995) Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Investig 96: 1169-1175.
- 71. Ballermann BJ, Dardik A, Eng E, et al. (1998) Shear stress and the endothelium. Kidney Int Suppl 67: S100-S108.
- 72. Davis ME, Grumbach IM, Fukai T, et al. (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279: 163-168.
- 73. Shiraya S, Miwa K, Aoki M, et al. (2006) Hypertension accelerated experimental abdominal aortic aneurysm through upregulation of nuclear factor kappaB and Ets. Hypertension 48: 628-636.
- 74. Bhullar IS, Li YS, Miao H, et al. (1998) Fluid shear stress activation of IkappaB kinase is integrin-dependent.J Biol Chem273: 30544-30549.
- 75. Schneider.
- 76. Aoki T, Kataoka H, Ishibashi R, et al. (2008) Simvastatin suppresses the progression of experimentally induced cerebral aneurysms in rats. Stroke 39: 1276-1285.
- 77. Aoki T, Kataoka H, Ishibashi R, et al. (2008) Nifedipine inhibits the progression of an experimentally induced cerebral aneurysm in rats with associated down-regulation of NFKappa B transcriptional activity. Curr Neurovasc Res 5: 37-45.
- 78. Aoki T, Kataoka H, Ishibashi R, et al. (2009) Pitavastatin suppresses formation and progression of cerebral aneurysms through inhibition of the nuclear factor kappaB pathway. Neurosurgery 64: 357-365.
- 79. Lee JY, Kim JS, Kim JM, et al. (2007) Simvastatin inhibits NFkappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol 7: 241-248.
- 80. Kolega J, Gao L, Mandelbaum M, et al. (2011) Cellular and

molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 48: 429-442.

- Cebral JR, Detmer F, Chung BJ, et al. (2019) Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall. AJNR Am J Neuroradiol 40: 510-516.
- 82. Chung BJ, Mut F, Putman CM, et al. (2018) Identification of hostile hemodynamics and geometries of cerebral aneurysms: a case-control study. AJNR Am J Neuroradiol 39: 1860-1866.
- 83. Watton PN, Raberger NB, Holzapfel GA, et al. (2009) Coupling the coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J Biomech Eng 131: 101003.
- 84. Tateshima S, Murayama Y, Villablanca JP, et al. (2003) In vitro measurement of fluid induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34: 187-192.
- 85. Kadasi LM, Dent WC, Malek AM (2013) Colocalization of thin walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms. J Neurosurg 119: 172-179.
- Boussel L, Lawton M, Higashida R, et al. (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 32: 2997-3002.
- 87. Skodvin TO, Johnsen L, Gjertsen O, et al. (2017) Cerebral aneurysm morphology before and after rupture nationwide case series of 29 aneurysms. Stroke 48: 880-886.
- 88. Turjman AS, Turjman F, Edelman ER (2014) Role of fluid dynamics and inflammation in intracranial aneurysm formation. Circulation 129: 373-382.
- 89. Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 295: 369-377.
- Sakamoto N, Saito N, Han X, et al. (2010) Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem Biophys Res Commun 395: 264-269.
- 91. Penn DL, Komotar RJ, Sander Connolly E (2011) Hemodynamic mechanisms underlying cerebral aneurysm pathogenesis. J Clin Neurosci 18: 1435-1438.
- Griffith TM (1994) Modulation of blood flow and tissue perfusion by endothelium-derived relaxing factor. Exp Physiol 779: 873-913.
- 93. Liepsch DW (1986) Flow in tubes and arteries: a comparison. Biorheology 23: 395-433.
- 94. Moncada S, Plamer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathology and pharmacology. Pharmacol Rev 43: 109-142.
- 95. Moritake K, Handa H, Hayashi K, et al. (1973) Experimental studies on intracranial aneurysms (a preliminary report): some biomechanical considerations on the wall structures of intracranial aneurysms and experimentally produced aneurysms. Neurological Surgery 1: 115-123.
- 96. Walpola PL, Gotlieb AI, Cybulsky MI, et al. (1995) Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol 15: 2-10.
- 97. Guzman RJ, Abe K, Zarins C (1997) Flow-induced arterial enlargement is inhibited by suppresion of nitric oxide synthase activity in vivo. Surgery 122: 273-279.

- 98. Hara A, Yoshimi N, Mori H (1998) Evidence for apoptosis in human intracranial aneurysms. Neurol Res 20: 127-130.
- 99. Sho E, Sho M, Singh TM, et al. (2001) Blood flow decrease induces apoptosis of endothelial cells in previously dilated arteries resulting from chromic high blood flow. Arterioscler Thromb Vasc Biol 21: 1139-1145.
- 100. Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 177: 109-159.
- 101. Glagov S, Zarins C, Giddens DP, et al. (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112: 1018-1031.
- 102. Zarins CK, Giddens DP, Bharadvaj BK, et al. (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53: 502-514.
- 103. Marchese E, Vignati A, Albanese A, et al. (2010) Comparative evaluation of genome-wide gene expression profiles in ruptured and unruptured human intracranial aneurysms. J Biol Regul Homeost Agents 24: 185-195.
- 104. Pentimalli L, Modesti A, Vignati A, et al. (2004) Role of apoptosis in intracranial aneurysm rupture. J Neurosurg 101: 1018-1025.
- 105. Sawyer DM, Pace LA, Pascale CL, et al. (2016) Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J Neuroinflammation 13.
- 106. Kataoka K, Taneda M, Asai T, et al. (1999) Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30: 1396-1401.
- Nuki Y, Matsumoto MM, Tsang E, et al. (2009) Roles of macrophages in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 29: 495-503.
- 108. Aoki T, Kataoka H, Morimoto M, et al. (2007) Macrophage derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 38: 162-169.
- 109. Kanematsu Y, Kanematsu M, Kurihara C, et al. (2011) Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42: 173-178.
- 110. Kurki MI, Hakkinen SK, Frosen J, et al. (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: An emerging regulative role of Toll-like receptor signaling and nuclear factorkappaB, hypoxia-inducible factor-1A, and ETS transcription factors. Neurosurgery 68: 1667-1675.
- 111. Hwang J, Ing MH, Salazar A, et al. (2003) Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res 93: 1225-1232.
- 112. Arnal JF, Dinh-Xuan AT, Pueyo M, et al. (1999) Endotheliumderived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 55: 1078-1087.

- 113. Tamura T, Jamous MA, Kitazato KT, et al. (2009) Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 27: 1284-1292.
- 114. Fukuda M, Aoki T (2015) Molecular basis for intracranial aneurysm formation. Acta Neurochir Suppl (Wien) 120: 13-15.
- 115. Jamous MA, Nagahiro S, Kitazato KT, et al. (2007) Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg 107: 405-411.
- 116. Wang Z, Kolega J, Hoi Y, et al. (2009) Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 65: 169-177.
- 117. Dolan JM, Sim FJ, Meng H, et al. (2012) Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol Cell Physiol 302: C1109-C1118.
- 118. Hoi Y, Gao L, Tremmel M, et al. (2008) In vivo assessment of rapid cerebrovascular morphological adaptation following acute blood flow increase. J Neurosurg 109: 1141-1147.
- 119. Pawlowska E, Szczepanska J, Wisniewski K, et al. (2018) NFκB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role? Int J Mol Sci 19: 1245.
- 120. Taylor BES, Appelboom G, Zilinyi R, et al. (2015) Role of the complement cascade in cerebral aneurysm formation, growth, and rupture. Neuroimmunol Neuroinflamm 2: 93-101.
- Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39: 1608-1619.
- 122. Papadaki M, Ruef J, Nguyen KT, et al. (1998) Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circ Res 83: 1027-1034.
- 123. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282: 2035-2042.
- 124. Qiu T, Jin G, Xing H, et al. (2007) Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: A computational fluid modeling study. Neurol Sci 38: 1009-1018.
- 125. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis-The good, the bad, and the ugly. Circ Res 90: 251-262.
- 126. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8: 1379-1385.
- 127. Zhou G, Zhu Y, Yin Y, et al. (2017) Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci Rep 7: 5331.

DOI: 10.36959/524/335

Copyright: © 2023 Kumar VS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SCHOLARS.DIRECT