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Introduction
The availability of resources for farmers is minimal, making 

crop management strategies that maximize crop output 
difficult to implement [1]. Agriculture systems that are over 
managed may be detrimental to a sustainable agricultural 
system [2]. While improved genetics, management, and 
environmental adaptations contributed to the increased 
production of major commodity crops, quantifying their 
relative contributions is difficult due to the environment's 
complex interactions and dynamic nature and management 
practices [3]. Crop managers face significant challenges in 
maintaining a consistent and high-yielding crop production 
level in an unexpected climate, as crop management tactics 
rely heavily on prior practices [4]. The discrepancy between 
potential and actual agricultural yields may be significant for 
certain crops [5]. It is suggested in studies that yield may be 
enhanced when both best-adapted variety and agronomic 
practices are applied in the field [5].

However, the improvement of the genetic structure of 
plants increased the complex trait like yield [6]. To maximize 
agricultural productivity, crop management practices must 

Review Article

Abstract
Conventional phenotyping approaches for vegetable crops such as Solanaceae, Bulb, and Root crops have contributed 
significantly to the development of numerous varieties. Despite this, traditional phenotyping procedures are insufficient 
because of the longer time required to produce a variety, poor genetic gain, environmental influences, and other 
externalities that impact phenotype-based selection. A novel recent approach of high throughput phenotyping (HTP) is 
regarded a potential tool for addressing the problems of traditional phenotyping. The advent of sensor, computer vision, 
automation, and sophisticated machine learning technologies sparked the creation of high-throughput phenotyping 
technology in the prior decade. HTP platforms are being used to conduct non-destructive evaluations of the whole plant 
system in a variety of crops. HTP provides precise measurements and suggests the collection of high-quality and accurate 
data, which is required for standardizing phenotyping for genetic dissection and genomic assisted breeding techniques 
such as genome-wide association studies (GWAS), linkage mapping, marker-assisted selection (MAS), and genomic 
selection (GS). The rest of this chapter examines the application of high-throughput phenotyping tools in genomic-
assisted breeding for vegetable crops.
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address a variety of practical constraints [7]. Moreover, the 
advancements in breeding technology continue to promote 
yield gains in staple crops globally [8,9].

Conventional phenotyping techniques are prohibitively 
expensive, time-consuming, slow, and frequently harmful, 
and they only allow for the analysis of a few variables at a 
time [10]. However, traditional breeding operations are being 
transformed into more efficient contemporary breeding 
programs by incorporating emerging technologies, most 
notably high-throughput phenotyping [11].
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manual tools and among other techniques [23-25]. Information 
on the tools for HTP in vegetables is provided in Figure 1.

A fully functional HTP system is composed of supporting 
hardware (sensors and platforms) and a computing 
component that communicates with one another (data 
process and analytics) [26]. The research will analyze and 
integrate a variety of advanced imaging techniques commonly 
used in computed tomography (CT), into HTP systems in this 
rapidly growing market [27]. While the industrial sector is 
driving sensor technology advancements, efforts are being 
made to incorporate them into agricultural high-throughput 
systems (AHTP) [28].

The data processing and the analytic system is the 
most critical component of an HTP system. The current 
generation of HTP systems, particularly those with high-
resolution imaging capabilities, can collect multidimensional 
data on crops from a large number of people [29]. On the 
other hand, researchers will quickly discover that they are 
capable of being overwhelmed by massive amounts of data 
[30]. In conjunction with ongoing community initiatives, HTP 
technology has the potential to play a critical role in resolving 
the breeder's dilemma and expediting the development of 
new crop varieties with advanced traits [31].

A uniform set of criteria for assessing agricultural qualities 
in multiple dimensions can be achieved using equipment such 
as spectrum reflectance, photogrammetry, and computer 
vision [32]. Timely and accurate measurements of agricultural 
characteristics High-throughput phenotyping devices enable 
breeding programs to increase their capacity to manage a 
larger breeding population while maintaining the same level 
of selection intensity [12]. For example, HTP platforms based 
on unmanned aerial systems (UAS) could be used to rapidly 
scan breeding grounds [33]. Advanced sensors capture 
information about the crop that the human eye or senses are 
unable to see or perceive [34].

A new technology, non-destructive phenotyping, adds a 
new dimension to the data collection process by increasing 
the precision, speed, and analysis of captured data [12]. 
According to scientists, agricultural productivity is expected 
to increase significantly shortly due to genetic enhancement 
enabled by high-throughput phenotyping technologies 
[13]. Sensing technology, data processing, and analysis 
advancements have significantly improved field and crop 
management tactics [14]. Apart from focusing on a variety 
of traits that indicate the water content, chlorophyll content, 
biomass, and growth potential of a plant [15].

However, the development of novel vegetable varieties 
and target environments poses significant challenges in 
terms of high-throughput and precision phenotyping, 
modeling, and collaboration with vegetable breeders [16]. 
Accurate phenotyping was required for several aspects like 
physiological, morphological, structural, biochemical and 
molecular characteristics to develop high-yielding vegetable 
cultivars that were more resistant to biotic and abiotic stresses 
[17,18]. As a result, breeders can conduct multiple trials under 
various growth conditions and with a variety of lines to map 
populations, breed populations, mutant populations, and the 
germplasm pool [19]. The remainder of this chapter discusses 
how high-throughput phenotyping technologies can be used 
to optimize breeding operations in genomic assisted breeding 
for vegetable yield gains.

What is High-Throughput Vegetable Pheno-
typing?

One hundred years ago (Johannsen 1903, 1911), The 
term "phenotype" was coined as a counterpoint to the 
concept of "genotypes" [20], and refers to a collection 
of methodologies and processes for accurately assessing 
plant growth, architecture, and composition at various sizes 
[21,22]. Historically, plant breeders have analyzed hundreds 
to thousands of plant phenotypes using visual observations, 

         

Figure 1: Schematic representation of high throughput phenotyping in vegetables.
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Advanced data analytics and artificial intelligence models 
extract previously undiscovered information from human and 
sensor data, and they hold enormous promise for identifying 
novel agricultural characteristics [35]. The additional elements 
can be used to characterize plant performance during a 
particular developmental stage (for example, emerging, 
blooming, or harvesting) or to assess crop dynamic responses 
to environmental changes over the course of a growing season 
[36]. Along with increasing the amount of data available for 
assessing minute genetic differences between genotypes, 
unique crop characteristics have the potential to increase 
genetic diversity within the crop population [36].

Nowadays, genetic studies on QTL mapping and genome-
wide association studies (GWAS) may be used to identify 
critical genetic variables underlying or associated with yield 
increase using HTP-based phenotypes [37]. By utilizing 
marker-assisted selection (MAS) during breeding, it is possible 
to improve the incorporation of genetic characteristics 
associated with desirable agricultural characteristics into 
the existing vegetable germplasm [38]. Integrating breeding 
populations enables more precise selection, shorter 
breeding cycles, and increased genetic gain [39]. Large-scale 
phenotyping enables the collection of massive amounts of 
agricultural data with high spatiotemporal resolution and the 
identification of novel crop characteristics [40]. This technique 
enables the integration of crop and environmental data, as 
well as management data [41]. Prescriptive phenotyping 
allow the breeders to develop crop qualities in response to 
the breeder and consumer requests [42].

High-Throughput Phenotyping (HTP) Plat-
forms for Vegetable Crops

High throughput phenotyping is a non-destructive 
technology that creates a good way for measuring the 
plant phenotype under laboratory and field circumstances 
[43]. Using sophisticated automation and robotics, imaging 
(2D and 3D) methods, innovative sensors, hardware and 
software, these systems monitors a range of plant growth 
and development aspects [44]. HTP is based on real-time 
monitoring of plant growth and development in smart 
glasshouses and physiological and biochemical reactions [45]. 
Along with plant growth rates and biomass accumulation, the 
visible imaging system quantifies a range of characteristics, 
such as canopy architecture and phenology [46]. On the 
other hand, a hyperspectral imaging system can identify 
internal properties such as sugar, starch, protein, and 
moisture content, as well as a range of factors associated 
with stress [47]. Multiple pictures at varying time intervals 
and wavelengths are acquired by HTP devices to create data 
for software-based analysis [48-52].

High-Throughput Phenotyping in Genomic 
Assisted Breeding

The advanced technology of high throughput phenotyping 
has been successfully used for rapid evaluation of plants 
traits in glass houses and controlled conditions [12]. Both the 
academic and industrial sectors have attempted to develop 
high-throughput screening (HTS) technologies to adapt 

various crops including vegetables for a variety of breeding 
purposes [46]. Jansen and colleagues (2009) developed the 
GROWSCREEN FLUORO to assess stress tolerance in rosette 
plants using leaf growth and chlorophyll fluorescence 
characteristics [53]. Flood, et al. (2016) developed the 
Phenovator, which can screen over 1000 Arabidopsis plants 
for photosynthesis, growth, and multispectral reflectance 
multiple times per day [54,55]. These studies aimed to 
decipher agriculture's chronological evolution and assess 
crop's genetic responses [56].

In vegetable studies, image features are frequently used 
to replace manual measurements and increase data collection 
efficiency (phenotyping), or in conjunction with genomic 
analyses such as quantitative trait loci (QTLs) and genome 
wide association studies (GWAS) mapping to evaluate genetic 
variation in crops [57,58] or to predict crop performance [58]. 
Several quantitative traits are identified in vegetables crops.

High-Throughput Phenotyping under Con-
trolled Condition

A regulated environment is frequently defined in plant 
science as an enclosed enclosure in which certain environmental 
variables such as light condition, temperature, humidity 
temperature and CO2 level are controlled and monitored [59]. 
Greenhouses, growth chambers, temperature chambers, 
and nursery rooms are only a few facilities often used in 
plant research to investigate plant responses to controlled 
environmental conditions [60]. In controlled environments, 
plant phenotyping systems are made of sensors, automated 
control systems, data processing, management systems, 
and computer software that all work in concert to provide 
results. The controlled environment is smaller (diameters) 
and more equipped than natural habitats, which simplifies 
the deployment of automated phenotyping devices much 
more than in the wild [61]. These systems collect data on 
agricultural attributes in a high-throughput manner through 
the use of sensors, automation, and control systems [62]. The 
current state of high-throughput plant phenotyping systems 
in controlled environments was discussed and the sensors 
used to assess plant characteristics in such systems [63].

Root Phenotyping
Although the root system dictates the positioning of roots 

in the soil, little is known about the roots of plants when 
they are not in the soil [64]. It is critical to understand the 
anatomical properties of roots in order to appreciate water 
transport, nutrient absorption, root carbon costs, and root 
interactions with microorganisms such as mycorrhizal fungi 
[65]. Finally, the most unclear root phenes are those that are 
reliant on physiological and flux-related processes. When it 
comes to root research, they are seldom quantified and have 
received far less attention in "high-throughput" settings than 
in traditional ones [66]. According to current thought, the 
physiological phenes of roots represent a vast and unexplored 
frontier in root research. Roots are notoriously difficult to 
analyze [67]. As a result of this difficulty, the genetic and 
functional foundations of root phenes are less established 
than those of aboveground phenes [68,69].
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future perspectives. Mol Plant 13: 187-214.
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processes. Ann Bot 127: 397-410.
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future challenges. Agronomy 8: 57.
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To close this "phenotyping gap," a shift away from 
traditional phenotyping toward image-based phenotyping 
has occurred, which enables relatively high throughput while 
maintaining root measurement accuracy [70]. Numerous 
platforms make use of two-dimensional imaging via cameras 
and propagate plants via seedlings on agar plates, germination 
paper, or fabric cloth in bins [71,72]. Additionally, readers 
are encouraged to peruse this manual (Figure 1). Even 
though controlling environmental factors is advantageous 
for characterizing root phenotypes, this chapter focuses 
on strategies applicable to field-grown plants [73]. The 
integration of root phenes and functional phenomics will need 
the phenotyping of several root phenes at the same time. It 
is anticipated that standard approaches will be tested in the 
field, which will address the root cause of the "phenotyping 
gap." We must dig deeper and harder to fully realize the 
promise of roots for agricultural revolutionization [73].

Conclusion
In summary, agricultural HTP technology has the ability 

to solve the breeder's equation for maximum genetic 
gain by increasing the intensity and precision of selection, 
improving the detection of genetic variations, and decreasing 
breeding cycles. Crop HTP technology is a multidisciplinary 
and comprehensive approach that integrates research in 
agronomy, information science, engineering sciences, and 
biology. Additionally, it leverages cutting-edge computer 
and artificial intelligence technologies to provide a more 
comprehensive solution. Numerous advanced data analysis 
techniques (e.g., machine learning, deep learning) are being 
used to examine the different phenotypic data available for 
crops and develop predictive and prescriptive models for crop 
phenotyping in a highly automated, multi-dimensional, big-
data environment. This section will provide the most current 
information on HTP technology and its applications in plant 
breeding, genetics, genomics assisted breeding, and some 
case studies to assist future researchers in developing and 
improving HTP technology.
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