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Introduction
The most widely recognized explanation of Alzheimer's 

disease (AD) states that it begins as an abnormal amyloid 
buildup in the brain and progresses to dementia over a 
number of decades [1-5]. According to estimates from the 
Alzheimer Association as of March 2012, 5.4 million Americans 
have been diagnosed with AD, and more than 95% of them 
are 65 or older. Additionally, AD affects almost half of the 
population over the age of 85 [6-9]. The condition produces 
little strokes in the brain, which results in the slow cell death 
and nerve dysfunction in the brain. A person suffering from 
the condition may be unaware of the strokes because they 
occur without any perception [10]. The rate of advancement 
of Alzheimer's disease (AD) differs amongst persons, thus 
rendering it impossible to gather precise projections of 
disease progression or time until specific medical outcomes 
for individual patients [11]. This implies that effective 
prevention will necessitate predicting who will acquire AD 
decades before symptoms appear. As a result, there is a rising 
interest in establishing precise methods of identifying persons 
who are predisposed to developing symptomatic AD, in order 
to ensure they could be targeted for preventive interventions 
such as risk factor reduction, behavioural modification, or 
pharmacologic treatment [12,13].

Considering the disease cannot be cured, the acceptable 
treatment is limited to slow down the progression of the 

ailment. Early disease detection will be beneficial for the 
doctor, the patient's family, other close friends, etc. As a 
result, machine learning approaches are utilized to detect 
the disease early. In order to achieve the finest degree 
of accurateness, five strategies of ensemble methods are 
applied. Gradient boost, Stacking, Bagging, Voting and 
Adaptive boost Classifier are the approaches used. Using 
Python script for implementation, the most suitable and 
accurate model can possibly be recognized.

Prior models for Alzheimer's disease risk prediction 
are often based on preset health profile variables such 
as sociodemographic (age, gender, education), lifestyle 
(physical activity), midlife health risk factors (systolic blood 
pressure, BMI, and total cholesterol level), and cognitive 
profiles [14,15]. Aside from identifying Alzheimer's disease, 
forecasting the severity of cognitive impairment is a clinically 
significant challenge. Previous research has demonstrated 
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Abstract
Background: Alzheimer's disease (AD) is a progressive neurological condition characterized by a loss in cognitive functions, 
with no disease-modifying medication now available. It is crucial for early detection and treatment of Alzheimer's disease 
before clinical manifestation. The stage between cognitively healthy older persons and AD is known as mild cognitive 
impairment (MCI).

Method: To predict the transition from one-stage MCI to probable AD, five ensemble learning approach was used 
(Stacking, Gradient boost Bagging, Adaptive boost and Voting), an integrated model that combines not only cross-
sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance 
biomarkers from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI).

Conclusion: The adaptive boost, stacking and bagging ensemble approach has shown potential to identify those at risk 
of developing Alzheimer's disease, this would benefit them the most from a clinical trial or to use as a stratification 
approach inside clinical trials.
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updates

http://crossmark.crossref.org/dialog/?doi=10.36959/584/465&domain=pdf


Citation: Orochi OP, Eleonu OF (2024) Aging and Health: Comparison of Ensemble Techniques for Early Prediction of Alzhiemer Disease. 
Insights Biomed Res 7(1):181-187

Orochi and Eleonu. Insights Biomed Res 2024, 7(1):181-187 Open Access |  Page 182 |

to-AD conversion. First, features from magnetic resonance 
(MR) images were retrieved, and then valuable features were 
chosen using a feature selection method. Subsequently these 
grading scores from several modalities were entered into a 
classifier to distinguish participants with progressing MCI from 
those with stable MCI. The research by Matoug, et al. [32] 
described a pseudo-automatic method that reads volumetric 
MRI, extracts the middle slices of the brain region, performs 
segmentation to find the region of the brain's ventricle, 
generates a feature vector that describes this region, creates 
a SQL database that contains the generated data, and then 
categorizes the images using the extracted features.

Xiaojing, et al. [18] developed a machine learning method 
to distinguish patients with AD or moderate cognitive 
impairment (MCI) from healthy elderly and to predict AD 
conversion in MCI patients by computing and evaluating 
localized morphological variations in the brain between 
groups. Asymmetric diffeomorphic registration was used to 
calculate the distance between each pair of subjects, which 
was then followed by an embedding algorithm and a learning 
approach for classification.

Methods
An all-encompassing meta-approach to machine learning 

called ensemble learning aims to improve predictive 
performance by pooling predictions from many models called 
base leaners. Whilst one can create an apparently infinite 
number of ensembles to tackle model prediction, three 
strategies dominate the field of ensemble learning which 
are Boosting, Stacking and Bagging. Sequential and parallel 
ensemble techniques are the two primary kinds of ensemble 
methods.

Sequential ensemble approaches produce base learners 
in a sequential order. The sequential production of basic 
learners fosters dependability among the base learners. 
The model's performance is then improved by giving bigger 
weights to previously misrepresented learners.

Parallel ensemble approaches generate base learners in 
a parallel fashion, such as random forest. Parallel techniques 
make use of the parallel generation of base learners to develop 
independence among the base learners. The independence 
of base learners considerably lowers the inaccuracy caused 
by the use of averages.

In base learning, the majority of ensemble strategies use 
a single algorithm, resulting in homogeneity across all base 
learners. Homogenous base learners are base learners of the 
same type with similar characteristics. Heterogeneous base 
learners, resulting in heterogeneous ensembles.

In the healthcare sector, machine learning has an 
enormous impact. The healthcare area has an immense 
quantity of datasets to design an advanced and scientific way 
to diagnose the disease at an early stage. As a result, some 
machine learning algorithms are employed for predicting 
symptoms and choosing the top precision supplier among 
all of these approaches. The proposed strategy as in Figure 
1 employs the ensemble technique for forecasting the 
five phases of Alzheimer's disease in advance. Adaptive 

that markers of primary AD pathology, neurodegeneration 
(structural MRI, FDG-PET), or biomarker combinations can 
predict whether a person would progress from moderate 
cognitive impairment (MCI) to AD dementia [16-21]. The 
moment these alterations start to take place and the point 
at which they may be distinguished from normal aging are, 
however, not well understood. This question is critical for 
establishing measurements that may be more sensitive to 
recognizing persons in the preclinical stage of the disease, 
as well as for therapeutic implications. As more effective 
pharmacological therapies for Alzheimer's disease become 
available, it will become increasingly vital to develop and 
deploy preventive techniques to identify persons with 
preclinical dementia earlier in the illness's natural course. 
Artificial intelligence-based 18F-FDG-PET analysis, including 
machine learning and deep learning, has gradually entered 
mainstream computing [22-25].

Advances in artificial intelligence, particularly in the field 
of machine learning, pose novel challenges as a result of 
the merging of computer science and biomedical sciences 
[26]. The topic of big data with high data dimensions is 
being researched in the field of medicine, particularly with 
regard to magnetic resonance imaging (MRI) images. As the 
Internet and databases advance, big data continues to grow 
and advance tremendously. This is especially true in the case 
of medical large data and imagery. As a result, the issue of 
increasing data demonstrates the concept and potential of 
big data [27].

Related Study
Nuria, et al. [28] described the variations in the short-term 

temporal network dynamics of undirected and weighted 
whole-brain functional connectivity between healthy aging 
persons and people with mild cognitive impairment (MCI). 
The Network Change Point Detection technique was used 
to identify major change points in the resting-state fMRI 
register, and the fluctuations in the topological features of 
the sub-networks between significant change points were 
investigated. Ji, et al. [15] used large-scale administrative 
health data from the Korean National Health Insurance Service 
database between 2002 and 2010 to test the feasibility of 
using trained and validated random forest, support vector 
machine, and logistic regression machine learning to predict 
AD incidents in 1, 2, 3, and 4 subsequent years.

Shweta, et al. [29] used machine learning methods to 
identify dementia in its early stages, including Random Forest 
Classifier, (SVM), Decision Tree Classifier, Extra Tree Classifier, 
Neighbours Classifier, and Logistic Regression. Gender, age, 
education, MMSE, CDR, ASF, Handedness, and the number 
of hospital visits of patients classified as demented or non-
demented make up the data for inquiry. Gopi, et al. [30] 
designed a decision tree model to forecast Alzheimer's disease 
(AD) in the future. In this study, demographic variables from 
150 participants and 373 MRI sessions were evaluated. To 
perform predictive analysis on Alzheimer's disease patients, 
pruned decision trees (J48) were used.

Weiming, et al. [31] created an ELM-based grading 
approach to efficiently fuse multimodal data and predict MCI-
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shows the specifics of the dataset used in this investigation. 
The baseline combined dataset included 12741 occurrences, 
3821of which were Mild Cognitive Impairment- CN, 2319 Early 
Mild Cognitive Impairment - EMCI, 389 Significant Memory 
Concern - SMC, 4644 Late Mild Cognitive Impairment- LMCI 
and 1568 participants recorded to have developed Alzheimer 
Disease- AD. The dataset includes people ranging in age 
from 55 to 96, both male and female, as well as many other 
characteristics that can be utilized to train and execute 
algorithms to detect the impact of Alzheimer's disease.

Data preprocessing
All modifications to the raw data before they are delivered 

to the machine learning algorithm is referred to as data 
preprocessing. Poor classification performance is likely to 
result from training a model on an unprocessed dataset. 
Preprocessing is essential for accelerating training methods like 
clustering and scaling. Real-world data is frequently inaccurate 
and lacking in specific behaviours or trends. It is also frequently 
inconsistent and incomplete. A tried-and-true technique for 
tackling such problems is data preprocessing. The dataset was 
first examined to see if there were any categorical values, and 
it did contain a few of them. The gender and marital status 
attribute columns are among them and are changed into the 
numbers 0-1 and 1-4. In order to better comprehend them, 
we have examined the correlation between qualities using 
the "correlation matrix" function based on group attributes 
and plotted them. The dataset is then examined for any null or 
missing values (Figure 2, Figure 3 and Figure 4).

Boost, Gradient Boost, Stacking, Voting and Bagging are the 
algorithms used and the implementation is done in Python 
programming language.

Data collection
Data used in the preparation of this article were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). Table 1 

         

TADPOLE (ADNI) Dataset

Data Preprocessing

Splitting the dataset into Training and
Testing

Apply Algorithms

Comparison of Algorithms

Figure 1: Proposed process framework.

Table 1: Dataset statistics.

Alzheimer Stages No. of Records

Mild Cognitive Impairment - CN 3821

Significant Memory Concern - SMC 389

Early Mild Cognitive Impairment - EMCI 2319

Late Mild Cognitive Impairment - LMCI 4644

Alzheimer Disease - AD 1568

Total 12741

         

Figure 2: Age statistics.
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algorithms that can convert weak models into strong models. 
Boosting works by placing weak learners in succession such 
that weak learners can learn from the next learner in the 
sequence, resulting in improved prediction models. Gradient 
boosting, Adaptive Boosting (AdaBoost), and XGBoost 
(Extreme Gradient Boosting) are all examples of boosting, 
however AdaBoost and Gradient Boost has been chosen for 
the study.

Adaptive Boost: AdaBoost employs weak learners in the 
form of decision trees, which typically feature one split, also 
known as decision stumps. AdaBoost's fundamental deciding 
stump is made up of inputs with equal weights.

Gradient Boost: Gradient boosting increases the 
ensemble's predictor count incrementally, with earlier 
predictors correcting subsequent ones in order to improve the 
precision of the model. In order to mitigate the consequences 
of previous prediction failures, new predictors are fitted. The 
gradient booster uses the gradient of descent to find and fix 
predicted errors made by students.

Splitting the dataset into training and testing
Based on the holdout approach, the dataset is split into 

a training set and a testing set [33]. According to several 
researchers in the literature, 80% of the dataset (used as a 
testing set) is sufficient to produce accurate results [34,35]. 
As a result, the prediction model was created using 80% and 
20% size of testing and training set required to achieve the 
best results.

Apply algorithm
In the present investigation, a comparative analysis with 

well-known methods has been done using the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). Bagging, Stacking, Voting, Adaptive Boost, and 
Gradient Boost are the ensemble methods used for early AD 
detection. The rest of this subsection presents a summary of 
the selected techniques.

Boosting: The term "boosting" refers to a class of 

         

Figure 3: Marital statistics.

         

Figure 4: Gender and diagnosis statistics.
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the data. The most common approach is used to obtain the 
final prediction from the model after all of the models have 
predicted the sample data. The category that the various 
algorithms predicted most accurately in this case will be 
treated as the model's final prediction.

Stacking: Also known as stacked generalization, is an 
ensemble method that combines models using another 
machine learning algorithm. The basic idea is to train machine 
learning algorithms on training datasets and then use these 
models to generate new datasets. The new dataset is then 
fed into the combiner machine learning algorithm.

Model evaluation
Figure 5 is confusion matrix representing adaptive boost 

method with the various labels encoded (CN-0, SMC-1, EMCI-
2, LMCI-3, and AD-4). Table 2 is a statistical breakdown of 
the data in Figure 5, Table 3 displays the key performance 
parameters Precision, Recall, and F1 scores for five phases of 
Alzheimer disease and Table 4 shows the performance of the 
categorization models on the test data.

Result
In this study, every one of the classification models is 

Bagging: This strategy, also known as "Bootstrap 
Aggregating," summarizes the key elements of this approach. 
Bootstrapping and aggregation are the two methods of 
bagging.

Bootstrapping is a sampling strategy where samples are 
taken utilizing the method of substitution from the entire 
sample (set). The sampling with the substitution method aids 
in the randomization of the selection process. The process 
is finished by applying the base learning algorithm to the 
samples.

Aggregation is used to include all potential outcomes 
of the prediction and randomize the result. Predictions 
made without aggregation won't be accurate because all 
possible outcomes won't be taken into account. As a result, 
the aggregate is based either on all of the results from the 
predictive models or on the probability bootstrapping 
techniques.

Voting: Voting ensembles are a subset of ensemble 
techniques. They use several models to train on the dataset 
and provide predictions because they are one of the ensemble 
methods. The entire dataset is fed to several models of 
various machine learning algorithms in Voting Classifiers, 
and each algorithm makes predictions after being trained on 

         

Figure 5: Confusion matrix of Adaptive boost.

Table 2: Statistics of Adaboost confusion matrix.

CN SMC EMCI LMCI AD TOTAL

CN 779 17 46 64 29 935

SMC 4 900 0 0 4 908

EMCI 71 6 731 78 40 926

LMCI 88 9 86 642 125 950

AD 36 1 25 44 819 925

TOTAL 978 933 888 828 1017 4644
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of algorithms based on machine learning for identifying 
the earliest stages of Alzheimer's. It has become evident 
that machine learning improves the precision of forecasts, 
particularly when compared to traditional statistical 
techniques. There are a number of improvements to our 
dataset and methodology that are important steps for 
future research. Here, we limited ourselves to modeling 14 
biomarkers that are commonly measured in AD clinical trials. 
We had excluded some interesting ones due to high number 
of null values, whilst over sampling is good to balance up data 
this can equally lead to model overfitting, in future other 
methods would be employed to handle the situation of data 
imbalance. Our future research will be about the using a 
much more robust dataset to improve classification accuracy 
applying the heterogeneous approaches.
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trained using 10 folds cross-validation on the training dataset. 
In order to prevent model overfitting, cross-validation has 
been carried out with the training dataset. The learners' 
effectiveness has been assessed using an unobserved test 
dataset. Table 4 shows the categorization performance of the 
models across both the training and testing periods.

According to the results analysis in Figure 4, three 
ensemble approaches, Stacking, Adaboost, and Bagging 
beat the other two classifiers and provided an accuracy of 
97% over the test time. Voting and GBoost have reasonable 
accuracies of 81% and 95%, respectively. It is also worth 
noting that the results obtained on test data are very similar 
to the findings obtained throughout the cross-validation 
period. This demonstrates that the created models were not 
overfitted during the training phase. AdaBoost ensemble 
model accurately categorized the majority of the unseen 
instances of the CN, SMC, EMCI, LMCI and AD classes, with 
class precisions [80%, 96%, 82%, 78%, 81%], class recall [83%, 
99%, 79%, 68%, 89%], F1 Score [81%, 98%, 81%, 72%, 84%] 
respectively. The SMC class findings suggest that testing 
instances have been misclassified. Whilst in Figure 5, 17 out 
of 933 instances of the SMC class were misclassified as the 
CN class. This is due to the fact that patients in the SMC class 
have clinical assessment characteristics that are extremely 
comparable to those found in the CN class. Furthermore, 
78 of the 828 LMCI cases have been incorrectly classified as 
EMCI. This is due to the characteristic values of the EMCI and 
LMCI classes intersect.

Conclusion
This research compares and evaluates recent work in 

the prognosis and prediction of Alzheimer's disease using 
ensemble learning approaches. Obviously, significant 
machine learning advances have been reported that cover 
the categories of data employed and the effectiveness 

Table 3: Performance evaluation using Recall, F1 Score and Precision.

Methodology
PRECISION RECALL F1 SCORE

CN SMC EMCI LMCI AD CN SMC EMCI LMCI AD CN SMC EMCI LMCI AD

Bagging 80 96 81 77 78 82 99 81 63 88 81 98 81 69 83

Gboost 75 92 82 75 75 79 98 79 60 85 77 95 80 66 80

Adaboost 80 96 82 78 81 83 99 79 68 89 81 98 81 72 84

Voting 75 94 81 80 77 84 99 80 55 89 79 97 81 65 83

Stacking 79 99 85 74 86 84 99 80 74 86 81 99 82 74 86

Table 4: Classification performance.

General Accuracy (%) on Train and Test Set Data

Methodology Train Set Test Set

GBoost 88 95

Voting 92 81

Stacking 93 97

Bagging 93 97

AdaBoost 93 97
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