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Introduction
The Cancer of unknown primary site (CUP) is a hetero-

geneous group of cancers in the absence of an identifiable 
primary tumor despite a standard diagnostic approach and 
accounts for approximately 5% of all cancer diagnoses [1]. 
The biologic mechanisms underlying this phenomenon are 
unknown [2]. CUP patients can be given site specific therapy 
with significant improvement in clinical outcome compared 
with empirical chemotherapy when cancer primary site was 
identified [3,4].

Currently, many molecular diagnostic methods have been 
widely applied in clinic, including RT-PCR [5], microRNA RT-
PCR [6], gene expression microarray [7] and DNA methyla-
tion microarray [8]. Advances in high-throughput sequencing 
have enabled cost-effective sequencing the transcriptome for 
clinical application [9]. RNA-Seq based predication algorithm 
have been proposed using TCGA’s RNA-Seq RSEM expression 
value and validated on both RNA-Seq and microarray dataset 
[10]. However, data analysis pipelines from raw FASTQ data 
to final tumor type predication are currently not fully imple-
mented and validated computationally and are not publicly 
available [11].

Here, I present a free, scalable and extendable software for 
CUP predication called TRANSCUP, which comprises modules 
for raw data processing, read mapping, quality report, gene ex-
pression quantification and building a random forest model for 
cancer type classification. It achieved high accuracy, sensitivity 

and specificity for tumor type classification based on external 
RNA-seq datasets. It has potential for broad clinical application 
for solving the CUP problem. TRANSCUP is open-source and 
freely available at https://github.com/plsysu/TRANSCUP

Methods
The TRANSCUP workflow is illustrated in Figure 1. To build 

CUP classifier, I use TCGA RNA-Seq data as training dataset, 
followed by sample and feature selection, data transforma-
tion, data normalization and random forest model building. 
To predict new tumor samples, I build a bioinformatics pipe-
line to process data from raw FASTQ reads to tumor type 
predication result. The details for implementation are the 
followings:

Training data source
TCGA harmonized gene expression quantification data 
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by 10-fold cross-validation. The final model was trained on all 
training data with the best hyper-parameters.

Bioinformatics pipeline

The raw reads were cleaned prior to following analysis by 
Trimmomatic [13]. Clean reads were mapped to the human 
genome GRCh38 by STAR [14] using the 2-pass model. Gene 
read counts were calculated using HTSeq-count [15]. GEN-
CODE v22 GTF file was used to alignment and HTSeq-count. 
To quantify gene expression, the fragments per kilobase of 
transcript per million mapped reads (FPKM) values of each 
gene were calculated. To evaluate the RNA-seq data quality, 
multiple metrics include yield, alignment, GC bias, rRNA con-
tent, regions of alignment (exon, intron and intragenic), con-
tinuity of coverage, 3′/5′ bias and count of detectable genes, 
among others were calculated by RNA-SeQC [16].

Snakemake workflow
To make this software extendable and scalable, I adopted 

snakemake [17,18] workflow engine to chain the tools, data-
bases, and config files together. This enables users to easily 
make use of any cluster environment for processing and con-
veniently manage tools, databases and pipelines.

and clinical data were retrieved from GDC portal (https://por-
tal.gdc.cancer.gov/) via TCGAbiolinks [12]. Totally, 32 cancer 
types (COAD and READ were combined to CRC) and 10,363 
tumor samples were used for model building.

Preprocess and feature selection
All FPKM expression data was log2-transformed, and only 

genes with (a) Maximum log2 expression greater than 2.5 
and (b) Variance in log2 expression greater than 0.1 were re-
tained. After filtering, the genes in each dataset were scaled 
to zero mean expression and unit variance. The mean and 
standard variance learned from training dataset for each 
gene was used to normalize the new data. Feature genes 
were selected by two criterion: 1) Those genes were different 
expressed by one tumor type to other tumor types; 2) Those 
genes were expressed more higher in one tumor type than 
other tumor types, which evaluated by t-test and log2-fold 
change, respectively. The top 100, 150, 200 genes’ log2 fold 
change value or log2 fold change value larger than 2.5 or 3 
were compared to find the best feature selection method.

Random forest model
The random forest algorithm was used for machine learn-

ing model building. To avoid overfitting, model was validated 

         

Figure 1: Workflow of TRANSCUP.



Citation: Peng L (2020) TRANSCUP: A Scalable Workflow for Predicting Cancer of Unknown Primary Based on Next-Generation Transcriptome 
Profiling. Insights Biomed Res 4(1):117-119

Peng . Insights Biomed Res 2020, 4(1):117-119 Open Access |  Page 119 |

3.	 Pavlidis N, G Pentheroudakis (2012) Cancer of unknown primary 
site. Lancet 379: 1428-1435.

4.	 Varadhachary GR, MN Raber (2014) Cancer of unknown primary 
site. N Engl J Med 371: 757-765.

5.	 Overman MJ, Soifer HS, Schueneman AJ, et al. (2016) Perfor-
mance and prognostic utility of the 92-gene assay in the molecu-
lar subclassification of ampullary adenocarcinoma. BMC Cancer 
16: 668.

6.	 Rosenfeld N, Aharonov R, Meiri E, et al. (2008) MicroRNAs accu-
rately identify cancer tissue origin. Nat Biotechnol 26: 462-469.

7.	 Pillai R, Deeter R, Rigl CT, et al. (2011) Validation and repro-
ducibility of a microarray-based gene expression test for tumor 
identification in formalin-fixed, paraffin-embedded specimens. J 
Mol Diagn 13: 48-56.

8.	 Moran S, Martínez-Cardús A, Sayols S, et al. (2016) Epigenetic 
profiling to classify cancer of unknown primary: A multicentre, 
retrospective analysis. Lancet Oncol 17: 1386-1395.

9.	 Stark R, M Grzelak, J Hadfield (2019) RNA sequencing: the teen-
age years. Nat Rev Genet 20: 631-656.

10.	Flynn WF, Namburi S, Paisie CA, et al. (2018) Pan-cancer ma-
chine learning predictors of primary site of origin and molecular 
subtype. bioRxiv.

11.	Davalos V, M Esteller (2020) Insights from the genetic and tran-
scriptional characterization of a cancer of unknown primary 
(CUP). EMBO Mol Med 12: e12685.

12.	Colaprico A, Silva TC, Olsen C, et al. (2016) TCGAbiolinks: An R/
Bioconductor package for integrative analysis of TCGA data. Nu-
cleic Acids Res 44: e71.

13.	Bolger AM, M Lohse, B Usadel (2014) Trimmomatic: A flexible 
trimmer for Illumina sequence data. Bioinformatics 30: 2114-
2120.

14.	Dobin A, Davis CA, Schlesinger F, et al. (2013) STAR: Ultrafast 
universal RNA-seq aligner. Bioinformatics 29: 15-21.

15.	Anders S, PT Pyl, W Huber (2015) HTSeq--a Python framework 
to work with high-throughput sequencing data. Bioinformatics 
31: 166-169.

16.	DeLuca, DS, Levin JZ, Sivachenko A, et al. (2012) RNA-SeQC: RNA-
seq metrics for quality control and process optimization. Bioin-
formatics 28: 1530-1532.

17.	Koster J, S Rahmann (2012) Snakemake--a scalable bioinformat-
ics workflow engine. Bioinformatics 28: 2520-2522.

18.	Singer J, Ruscheweyh HJ, Hofmann AL, et al. (2018) NGS-pipe: A 
flexible, easily extendable and highly configurable framework for 
NGS analysis. Bioinformatics 34: 107-108.

Results
I found that TOP200 was the best feature selection meth-

od after compared with other 4 methods mentioned above 
(Supplemental Table S1). 3817 genes were retained as fea-
ture genes (Supplemental Table S2). In the training phase, 
we performed 10-fold cross-validation on all training data to 
avoid overfitting and find best hyper-parameters. The accu-
racy, kappa, standard deviation of accuracy and standard de-
viation of kappa were 0.961, 0.959, 0.003292 and 0.003457, 
respectively. The median of sensitivity and specificity across 
32 cancer types were 0.969 and 0.999, respectively (Supple-
mental Table S3). I used five external public RNA-seq data-
sets (Supplemental Table S4) to evaluate the performance of 
TRANSCUP. These datasets totally contain 557 samples and 
across 4 different cancer types including OSCC (HNSC), CRC, 
lung cancer (LUAD/LUSC) and BRCA. Notably, the overall ac-
curacy of TRANSCUP was 98.7%, totally 7 samples were mis-
classified (Supplemental Table S5).

Conclusions
In this article, I described the TRANSCUP package for tu-

mor type predication. TRANSCUP has been validated using 
557 external samples and was more accurate than other 
methods for cancer type classification. Furthermore, TRANS-
CUP can analyze data from raw FASTQ to final cancer type 
predication results, and is more scalable and extendable 
than other methods. Users can train other kinds of models 
like deep learning models to extend its capability. However, 
this package needs to be validated on more external RNA-Seq 
datasets which including more diverse cancer types when 
data are available. Its actual clinical effect has to be verified 
by further experiments and clinical trials in the future.
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