

# Annals of Atoms and Molecules

### **Short Note**

# **On Filling Energy Levels and Sub-Levels**

### Z. V. Pachulia\*

Faculty of Natural Sciences, Mathematics, Technology and Pharmacy, Sokhumi State University, 0186 Tbilisi, Georgia

As it is known, the filling of energy levels and sub-levels is produced in accordance with V. M. Klechkowski I and II rules [1-3], which are based on the two solutions of the E. Schroedinger equation [4-5] – the principal n and the orbital I quantum numbers, but nothing is said about the third solution – the magnetic m, quantum number. It is true that the order obtained by increasing the energy corresponds to the experimental data, but in our opinion it is better to use a single unified rule in which to the sum of the quantum numbers (n and I) will be added the third term. The third solution of the Schroedinger

**Table 1:** The sum of three numbers for all sub-levels of the 7 periods

 of the periodic table of the elements is given in the table.

| sub-level | n | I | $k_{m_l}$ | $\frac{1}{k_{m_l}}$ | Σ     |
|-----------|---|---|-----------|---------------------|-------|
| 1s        | 1 | 0 | 1         | 1                   | 2     |
| 2s        | 2 | 0 | 1         | 1                   | 3     |
| 2р        | 2 | 1 | 3         | 0.33                | 3.33  |
| 3s        | 3 | 0 | 1         | 1                   | 4     |
| Зр        | 3 | 1 | 3         | 0.33                | 4.33  |
| 3d        | 3 | 2 | 5         | 0.2                 | 5.2   |
| 4s        | 4 | 0 | 1         | 1                   | 5     |
| 4p        | 4 | 1 | 3         | 0.33                | 5.33  |
| 4d        | 4 | 2 | 5         | 0.2                 | 6.2   |
| 4f        | 4 | 3 | 7         | 0.14                | 7.14  |
| 5s        | 5 | 0 | 1         | 1                   | 6     |
| 5p        | 5 | 1 | 3         | 0.33                | 6.33  |
| 5d        | 5 | 2 | 5         | 0.2                 | 7.2   |
| 5f        | 5 | 3 | 7         | 0.14                | 8.14  |
| 6s        | 6 | 0 | 1         | 1                   | 7     |
| 6р        | 6 | 1 | 3         | 0.33                | 7.33  |
| 6d        | 6 | 2 | 5         | 0.2                 | 8.2   |
| 6f        | 6 | 3 | 7         | 0.14                | 9.14  |
| 7s        | 7 | 0 | 1         | 1                   | 8     |
| 7p        | 7 | 1 | 3         | 0.33                | 8.33  |
| 7d        | 7 | 2 | 5         | 0.2                 | 9.2   |
| 7f        | 7 | 3 | 7         | 0.14                | 10.14 |

# equation m<sub>1</sub> determines the number of orbitals on the sublevels $k_{m_l} \left[ k_{m_l} (s) = 1, k_{m_l} (p) = 3, k_{m_l} (d) = 5, k_{m_l} (f) = 7 \right]$ . Our input is to add the inverse values of these numbers (1, 3, 5 and 7) $\frac{1}{k_{m_l}} - 1, 0.33, 0.2$ and 0.14 to this sum. With this in mind, the sum of three numbers $\left( \Sigma = n + 1 + \frac{1}{k_{m_l}} \right)$ for all sub-levels

of the 7 periods of the periodic table of the elements is given in Table 1.

| Table 2: The layout of the sub-levels according to the sum increase |
|---------------------------------------------------------------------|
| is given in the table.                                              |

| sub-level | n | I | $k_{m_l}$ | $\frac{1}{k_{m_l}}$ | Σ    |
|-----------|---|---|-----------|---------------------|------|
| 1s        | 1 | 0 | 1         | 1                   | 2    |
| 2s        | 2 | 0 | 1         | 1                   | 3    |
| 2р        | 2 | 1 | 3         | 0.33                | 3.33 |
| 3s        | 3 | 0 | 1         | 1                   | 4    |
| Зр        | 3 | 1 | 3         | 0.33                | 4.33 |
| 4s        | 4 | 0 | 1         | 1                   | 5    |
| 3d        | 3 | 2 | 5         | 0.2                 | 5.2  |
| 4p        | 4 | 1 | 3         | 0.33                | 5.33 |
| 5s        | 5 | 0 | 1         | 1                   | 6    |
| 4d        | 4 | 2 | 5         | 0.2                 | 6.2  |
| 5р        | 5 | 1 | 3         | 0.33                | 6.33 |
| 6s        | 6 | 0 | 1         | 1                   | 7    |
| 4f        | 4 | 3 | 7         | 0.14                | 7.14 |
| 5d        | 5 | 2 | 5         | 0.2                 | 7.2  |
| 6р        | 6 | 1 | 3         | 0.33                | 7.33 |

\*Corresponding author: Z. V. Pachulia, Faculty of Natural Sciences, Mathematics, Technology and Pharmacy, Sokhumi State University, 0186 Tbilisi, Georgia

Accepted: April 04, 2023

Published online: April 06, 2023

**Citation:** Pachulia ZV (2023) On Filling Energy Levels and Sub-Levels. Ann Atoms Molecules 4(1):17-18

**Copyright:** © 2023 Pachulia ZV. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



| 7s | 7 | 0 | 1 | 1    | 8     |
|----|---|---|---|------|-------|
| 5f | 5 | 3 | 7 | 0.14 | 8.14  |
| 6d | 6 | 2 | 5 | 0.2  | 8.2   |
| 7р | 7 | 1 | 3 | 0.33 | 8.33  |
| 6f | 6 | 3 | 7 | 0.14 | 9.14  |
| 7d | 7 | 2 | 5 | 0.2  | 9.2   |
| 7f | 7 | 3 | 7 | 0.14 | 10.14 |

The layout of the sub-levels according to the sum increase is given in Table 2.

The new filling rule will be formulated as follows:

The electron sub-levels are filled in accordance with the sum of the principal n, the orbital I quantum numbers and the inverse values of the number of orbitals on the sub-level -  $\sum = n + 1 + \frac{1}{k_{...}}$ .

Based on this, the principle of least energy is formed:

The electronic sub-levels are arranged in the following order according to the energy increase:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s < 5f < 6d < 7p < 6f < 7d < 7f.

### References

- 1. Klechkowski VM, Doklady (1951) 80: 603.
- 2. Klechkowski VM, Zh. Exsperim. i Teor. Fiz (1952) 23: 115.
- 3. Klechkowski VM, Zh. Exsperim. i Teor. Fiz 1962 41: 465 (Transl. Soviet Physics JETP (1962) 14: 334).
- 4. Schrödinger, E. (1926) An undulatory theory of the mechanics of atoms and molecules. Physical Review 28: 1049-1070.
- 5. Gray HB. (1965) Electrons and chemical bonding. WA Benjamin, Inc.

## DOI: 10.36959/961/628

**Copyright:** © 2023 Pachulia ZV. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

