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Abstract
N=4 superconformal n-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey 
a system of partial nonlinear differential equations generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation 
for F. The solutions are encoded by the finite Coxeter systems and certain deformations thereof, which can be encoded by 
particular polytopes. We provide An and B3 examples in some detail. Turning on the prepotential U in a given F background 
is very constrained for more than three particles and nonzero central charge. The standard ansatz for U is shown to fail for 
all finite Coxeter systems. Three-particle models are more flexible and based on the dihedral root systems.

Check for
updates

Conformal Quantum Mechanics: Calogero System
We are investigating systems of n+1 identical point particles with unit mass whose motion on the real line is governed by 

the Hamiltonian

1 11 =   + V ( ,..., )
2

n
i i BH p p x x + 		       							                  (1.1)

and subject to the canonical quantization relations

[ , ] .i i
j jx p iδ= 				          							                  (1.2)

together with

1 ( )
4

i i
i iD x p p x= − +  and 

1 ,
2

i iK x x= 	          							                  (1.3)

this Hamiltonian realizes an so(1, 2) conformal algebra

[ , ] ,  [ , ] = 2 , [ , ]D H iH H K iD D K iK= − =  	     							                  (1.4)

if the potential is homogeneous of degree −2,.

( 2) 0.i
i BX V∂ + = 				          							                    (1.5)

When demanding also permutation and translation invariance as well as admitting only two-body forces, the solution is 
uniquely given by the Calogero potential,

( )
2

2B i ji j

gV
x x<

=
−

∑ 				          							                  (1.6)

aTalk at the XVII International Colloquium on Integrable Systems and 
Quantum Symmetries in Prague, 19-21 June 2008, and at the XXVII 
International Colloquium on Group Theoretical Methods in Physics 
in Yerevan, 13-19 August 2008.
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N = 4 Super Conformal Extension: Su (1, 1|2) Algebra
Let us extend the algebra from ( )(1, 2) 1,1so su�  to the super algebra ( )1,1 2su  with central charge C by enlarging the 

set of generators

( , , ) ( , , ,Q , , , )aH D K H D K S J Cα α→  With 1,2,α =  1,2,3,a =  † †(Q ) Q ,  ( )S Sα α
α α= =

And imposing the nonvanishing (anti)commutators:

[ , ]D H iH= − 				    [ , ]D K iK= +

[ , ]D K iK= + 				    [ , ]a b abc cJ J i J= ∈

{Q ,Q } 2Hβ β
α αδ= 			  {Q } 2 ( ) 2a a aS i J D iCβ β β β

α α ασ δ δ= + − −

{ , } 2S S Kβ β
α αδ= 			   {Q , } 2 ( )  2a aS i J D iCα α α α

β β β βα δ δ= − − +

[ ,Q ] Q
2
iD α α= − 			   [ , ]

2
iD S Sα α= +

[ ,Q ]  K iSα α= + 			   [ , ]  QH S iα α= −

1[ ,Q ] ( ) Q
2a aJ β

α α βσ= − 		
1[ , ] ( )
2a aJ S Sβ

α α βσ= −

[ ,Q ] Q
2
iD α α= − 			   [ , ]

2
iD S Sα α= +

[ ,Q ]  K iSα α= + 			   [ , ]  H S iQα α= −

1[ ,Q ] Q ( )
2a aJ α β α

βσ= 		
1[ , ] ( )
2a aJ S Sα β α

βσ=

To realize this algebra one must pair the bosonic coordinates ix  with fermionic partners i
αψ  and 

†i iα
αψ ψ=  with i = 1, . 

. ., n+1 and α = 1, 2 subject to

{ , } 0,i j
α βψ ψ = 	 { , } 0,i iα βψ ψ = 		 { , } .i j ijβ β

α αψ ψ δ δ= 			                                             (2.1)

Surprisingly, the non-interacting generator candidates

0 ,iQ piα αψ=  0

i
Q pi

α α
ψ=  and 0 ,i iS xα αψ=  0 ,

iiS x
α α

ψ= 						                   (2.2)

0
1 ,
2 i iH p p=  0

1 ( ),
4

i i
i iD x p p x= − +  0

1 ,
2

i iK x x=  0
1 ( )
2

i i
a aJ

α β
α βψ σ ψ= 				                 (2.3)

fail to obey the su(1, 1|2) algebra, and hence interactions are needed! Their simplest implementation changes only

0 0 [ , ]Q Q i S Vα α α= −  and 0 ,H H V= + 							                                   (2.4)

Just requiring the invention of a potential ( , , ).V x ψ ψ
A minimal ansatz to close the su(1, 1|2) algebra reads [1,2]

1( ) ( ) ( )
4

j k li i j
B ij ijklV V x U x F x

α βα
βα αψ ψ ψ ψ ψ ψ= − + 						                   (2.5)

Where ....  denotes symmetric (Weyl) ordering. The coefficient functions ijU  and ijklF  are totally symmetric and 
homogeneous of degree -2. With this, the super symmetry generators in (2.4) become

( ( )) ( ) .
2

Ii j i j k
ij ijkl

iQ pj ix U x x F x β
αα α βψ ψ ψ ψ= − − 						                 (2.6)

The Structure Equations: WDVV, Flatness, Homogeneity
Inserting the minimal V ansatz (2.5) into the su(1, 1|2) algebra and demanding its closure produces conditions on ijU  and 

ijklF  First, one learns that
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ij i jU U= ∂ ∂  and ,ijkl i j k lF F= ∂ ∂ ∂ ∂ 									                    (3.1)

introducing two scalar prepotentials U and F. Second, these prepotentials are subject to the “structure equations” [1,2]

( ) ( ) ( ),i k p p l j i l pF F F∂ ∂ ∂ ∂ ∂ ∂ = ∂ ∂ ∂ 		  i
i j k jkx F δ∂ ∂ ∂ = − 				               (3.2)

( ) 0,i j i j k kU F U∂ ∂ − ∂ ∂ ∂ ∂ = 			   .i
ix U C∂ = − 					                (3.3)

The quadratic equation for F is the famous WDVV equation [3,4]. The relation below it (linear in U) resembles a covariant 
constancy equation, and we label it as the “flatness condition”. Its consistency implies the WDVV equation contracted with 

.jU∂  Both the WDVV equation and the flatness condition trivialize when contracted with ix . Finally, the two right equations 
are homogeneity properties for F and U. One of their consequences is

i
ijkl j k lx F F= −∂ ∂ ∂  and .i

ij jx U U= −∂ 								                    (3.4)

The one for F may be integrated twice to

1( 2) .
2

i i i
ix F x x∂ − = − 										                     (3.5)

Clearly, there is the redundancy of adding a quadratic polynomial to F and a constant to U. The third outcome of the su(1, 
1|2) algebra is

21 ( ) ( ) ( ) ( )
2 8B i i i j k i j kV U U F F= ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂


							                   (3.6)

Where we have reinstalled ~ to exhibit the quantum part in BV .

In case of vanishing central charge, 0C = , a partial solution consists in putting 0U ≡ . Since U does not enter in (3.2), the 
natural strategy is to firstly solve the WDVV equation and secondly turn on a flat U in this F background.

Prepotential Ansatz: Covectors and Couplings

The homogeneity conditions 
1( 2)  
2

i i i i
i ix F x x und x U C∂ − = − ∂ = −  are solved by [1]

2
hom

1 ( )  ( )
2

F f x ln x Fα
α

α α= − +∑  and hom ln ( ) ,U g x U
α

α α= − +∑ 				                 (4.1)

Where homF  and homU  are arbitrary homogeneous functions of degree −2 and 0, respectively. The sums run over a set of 

real covectors α (not indexed!) with values ( ) ,i
ix xα α=  which are subject to the constraints

2 2( ) :i if x x x Rα
α

α = =∑  and .g Cα
α

=∑ 								                   (4.2)

The coefficients fα  are essentially fixed by (4.2) and (if positive) may be absorbed into a rescaling of α, while the gα will 
emerge as coupling constants which, however, may be frozen to zero. One may rewrite the expressions (4.1) as

2
hom

1  ln 
2

F R R F= − + 	  and	  hom ln U C R U ′= − + 						                 (4.3)

or linearly combine (4.1) and (4.3) with coefficents adding to one.

Due to the generality of homF , we are currently unable to solve the WDVV equation (3.2) with (4.1) or (4.3), except for 
(')

hom 0F = . Even then, the nonlinearity of (3.2) restricts the linear combinations to

21 ( )  ln ( )
2

F f x x
α

α α= − ∑  	 or	 2 21 ( )  ln ( )  ln ,
2

F f x x R Rα
α

α α= + −∑ 	                           (4.4)

and imposes [5,6]

2

,
( ) 0

( ) ( )
f f

x xα β
α β

α β α β
α β

⊗⋅
∧ =∑  	 with	 2( ) ( ) ( ).ijkl i j j i k l l kα β α β α β α β α β⊗∧ = − − 		                (4.5)

Thus, let us limit ourselves to the ansatz (4.4) and try to turn on U. Even this is too difficult in general, so let us drop the 
homogeneous pieces in (4.1) and (4.3) and just combine the inhomogeneous parts. Then, the flatness condition (3.3) rules out 
all ‘R’ terms in F or U and demands
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1 1 0
( ) ( ) ( )

g f g
x x xβ β α

β α

α β β β
β α β

 ⋅
− ⊗ = 

 
∑ ∑  with ( ) ,ij i jβ β β β⊗ = 				                  (4.6)

While the bosonic potential reads
2

2

,

1 ( ( ) ).
2 ( ) ( ) 4BV g g f f

x x α β α β
α β

α β α β
α β

⋅
= + ⋅∑ 

							                  (4.7)

Because the equations decouple for mutually orthogonal sets of covectors, it suffices to take {α} as being indecomposable. 
In particular, it is convenient in translation-invariant models to decouple the center of mass ( ) ,i

com ix xα = ∑ reducing the 
bosonic configuration space from 1n nto+� � . Note that this alters

2 i iR x x= 	 to	
2

2 1 1( ) [ 2 ].
1 1

i i i k l
com i j lR x x n x x x x

n n
α <

 = − = ∑ − ∑ + + 
			              (4.8)

Partial results are known for n ≤ 3 [1,2,7-10], but the case n = 2 is special since the WDVV equation is empty then, which 
admits many extra solutions.

U = 0 Solutions: Root Systems
It was shown by Martini and Gragert [5] and extended by Veselov [6] that the set Φ+ of positive roots of any simple Lie 

algebra solves the left equation in (4.5). Let us normalize the long and short roots as

2α α⋅ =  for Lα φ +∈  and 
2
r

β β⋅ =  for Sβ φ +∈  with 1,2,3.r = 					                   (5.1)

Recalling that

1h
α φ

α α
+

∨

∈

⊗ =∑  and 
2 1h

α φ

α α
α α+∈

⊗ =
⋅∑ 								                    (5.2)

are determined by the Coxeter number h and the dual Coxeter number h∨ , the left condition in (4.2) becomes

1 1 1,
1 1

L

L L s
rh h h hf f fs f f

r rα
α α φ α φ

α α α α α α
+ +

∨ ∨

∈ ∈

− −
= ⊗ = ⊗ + ⊗ = +

− −∑ ∑ ∑ 				                (5.3)

which is solved by the one-parameter family

1 1L
hf t

h h∨ ∨

 = + − 
 

 and 
1 ( )s

hf r t
h h∨ ∨= − −  for .t ∈� 						                  (5.4)

It is not hard to see that the subset of roots belonging to any plane spanned by a short root β and its string 
( , , 2 ,..., )rα α β α β α β+ + +  through a long root α makes the double sum in the left equation of (4.5) already vanish. 
Since the full double sum decomposes into contributions of such planes, we get a prepotential solution (Figure 1)

2

2 2

1( ) ( ) ( )  ln ( )
2

1 ( )  ln ( ) 1 ( )  ( ) ln ( )
2 2

L S

L S

L SF t f f x x

t h hx x r x x
h h h

α φ α φ

α φ α φ α φ

α α

α α α α

+ +

+ + +

∈ ∈

∨ ∨ ∨
∈ ∈ ∈

= +

  = − − − − −  
   

∑ ∑

∑ ∑ ∑
			              (5.5)

         

α

β

β

α+β β β

α+βα α+2β

β

α+2β α+3β

β β β

β

2α+3β

α+βα

r=1 3=r2=r

Figure 1: Short-root strings through a long root.
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which is unique only for simply-laced Lie algebras. Note that Lf  and Sf  may be absorbed into a rescaling of α but their 

signs cannot, and so the non-simply-laced solution generalizes the 0t =  one found before [5,6] by adding to it a concrete 
homF .

Let us give two examples, with n + 1 and 3 particles, respectively:

1 :  { ( )} { ,  1 1}i j i
n iA A x x x x i j nα⊕ = − ∑ ≤ < ≤ +  and 

1 ,
1

f
nα =

+
				              (5.6)

1 2 3
2 1

1 1:{ ( )} ( 2 ),  ( ), | ( , , ) cyclic
3 3

1 1 1 3 1and = + t, = - t,  = . 
4 2 4 2 3

i j k i j

L s com

G A x x x x x x x x x i j k

f f f

α  ⊕ = + − − + + 
  		             (5.7)

The Weyl groups of the simple Lie algebras can be extended by the non-crystallographic Coxeter groups H4 (60 positive 
roots), H3 (15 positive roots) and 2 ( )I p  (p positive roots), which also clear the WDVV equation [6]. The dihedral groups 

2 ( )I p  with 
1f
pα =  cover all rank-two root systems, including 1 1 2 2, ,A A A BC⊗  and 2G  for p = 2, 3, 4 and 6, respectively, 

upon rescaling of α (Figure 2).

U = 0 Solutions: Deformed Root Systems
The Lie-algebra root systems are only the tip of an iceberg of WDVV solutions. It has been shown [7,9] that certain 

deformations of them retain the WDVV property. Let us rephrase some examples in our terminology.

The three positive roots of 2A  may be rearranged as the edges of an equilateral triangle. Consider now a deformation of 

this triangle, keeping the incidence relation 0.α β λ+ − =  The homogeneity condition (4.2) (and therefore also the WDVV 

equation) is easily solved by 24
f

Aα
β γ⋅

=  and cyclic permutations, where A denotes the area of the triangle.

If we try the same idea on the A3 system, we obtain the six edges of a regular tetrahedron and deform to encounter the five-
dimensional moduli space of tetrahedral shapes (modulo scale). Again, the homogeneity condition (4.2) has a unique solution
fα , but now the WDVV equation enforces the three conditions (Figure 3)

0,  0,  0α α β β γ γ′ ′ ′⋅ = ⋅ = ⋅ = 									                   (6.1)

on the skew edge pairs. These relations restrict the above moduli space to the three-dimensional subspace of orthocentric 
tetrahedra (modulo scale), with

236
f

Vα
β γ β γ′ ′⋅ ⋅

=  	 and	
36

β γ β γ
′

′⋅ ⋅
 and	 cyclic						                  (6.2)

where V is the volume. Alternatively, we may implement the conditions (6.1) by picking three non-coplanar covectors, say 
,α β′ ′  and ,γ ′  scaling them such that

1α β β γ γ α′ ′ ′ ′ ′ ′⋅ = ⋅ = ⋅ = 										                     (6.3)

And employing the three-dimensional vector product in fixing the remaining three covectors via

( ) ,  ( ) ,  ( ) .α α β γ β γ β β γ α γ α γ γ α β α β′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= × × = − = × × = − = × × = − 		              (6.4)

         
6=p5=p4=p3=pp=2

D2 A2 BC 2 G2

Figure 2: Root systems of the dihedral groups 2 ( )I p  for p = 2, 3, 4, 5, 6.
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With these data one gets 6 ( )V α β γ′ ′ ′= ⋅ ×  as well as

2

1
36

f
Vα

α α′ ′⋅ −
=  and 2

( 1)( 1)
36 

f
Vα

β β γ γ
′

′ ′ ′ ′⋅ − ⋅ −
=  and cyclic.						                 (6.5)

In fact, this strategy generalizes to orthocentric n-simplices as n-parametric deformations of the regular n-simplex generated 

by the 
1 ( 1)
2

n n +  positive roots of ,nA  with

( 2) ( 2)

2

...
( ! )

n n

f
n Vα

β γ β γ β γ β γ− −′ ′ ′′ ′′⋅ ⋅ ⋅ ⋅
=  etc								                      (6.6)

The orthocentricity derives from the WDVV equation by a the following dimensional reduction argument. Take ˆ i
in x → ∞  

for some fixed convector n̂ . Then, any factor 
1
( )xα

 in the WDVV equation (4.5) vanishes unless ˆ 0nα ⋅ = , which amounts to 

a reduction of the covector set { }α  to its intersection with the hyper plane orthogonal to n̂ . This process may be iterated until 
only covectors laying in a plane α β∧  spanned by two covectors α  and β  survive. This situation admits two possibilities: 
Either the α  and β  are concurrent, in which case another covector α + β or α − β completes a triangle satisfying the WDVV 
equation, or else α and β are skew, in which case there is no further covector in their plane and WDVV demands orthogonality 
(Figure 4).

The B3 root system provides another example. Four copies of the 3 short and 6 long positive roots can be assembled into 
the edge set of a truncated cube. We deform this polyhedron to

1 2 3 1 2 2 3 3 1
1 2 3 3 2 1 1 3 2 2 1 3{ ( )} { ,  ,  ;  ( ),  ( ),  ( )}x d x d x d x c c x c x c c x c x c c x c xα = ± ± ± 			              (6.7)

with ,   ,i ic d ∈ � , retaining the ‘incidence relations’ of a truncated cuboid. For 2 2 2 2 2
0 1 2 3:c c c c c= + + +  and

2 2 2 2 2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3 0 1 2 3

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 3 1 2

1 1 1{ } ,  ,  ;  ,  ,  c c c c c c c c c c c cf
c d c d c d c c c c c cα

 + − − − + − − − +
=  

 
		               (6.8)

         

 β’

γ ’

α ’

α

γ

 β

Figure 3: Tetrahedral configuration of covectors.

         

Figure 4: Truncated cube.
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we satisfy the homogeneity condition (4.2), i.e. 1fα αα α∑ ⊗ = . The relevant combinations  fα α  depend only on 

the three ratios 0/ic c . The rigid B3 root system with (5.4) occurs for 1 2 3 1c c c= = =  and 2
0

2 3 .
1

tc
t

−
=

+
 The case of 3C is 

very similar.

Finally, let us present an example based on weights rather than roots, namely a deformation of the 3B  representation 
7 8⊗  i.e. the vector plus spin or weights. For the 3 positive ‘vector’ and 4 positive ‘spin or’ covectors we take

1 2 3
1 2 3( ) ,  ( ) ,  ( ) ;  ,  ,  ,  

2 2 2 2
x d x x d x x d x α β γ α β γ α β γ α β γα β γ + + − − − + − − − +

= = = 	            (6.9)

with   ,id ∈ �  keeping the relations between vector and spin or weights. For 2 2 2 2
1 2 3:d d d d= + +  and

2 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3

2 2 2 2 2 2
1 2 3

,  ,  d d d d d d d d df f f
d d d d d dα β γ

− + + − + + −
= = =  and 2

2
spinorf

d
= 			              (6.10)

We obey (4.2) and achieve a two-parameter deformation of the original weight system at 1 2 3.c c c= =  The corresponding 
polyhedron, whose edges are built from 4 copies of the vector and 6 copies of the spin or weights, is a (in homogeneously 
scaled) rhombic dodecahedron with the faces dissected into triangles (Figure 5).

It is important to realize that all examples fulfill the WDVV equation, because the above dimensional reduction argument 
applies. The crucial properties are the mutual orthogonality of non-concurrent non-parallel edges as well as the incidence 
relations, which ‘sew’ the triangles together into a polyhedron. Yet, these properties are only necessary but not sufficient. 
Finally we remark that all our examples are part of a larger moduli space of 3n =  families of WDVV solutions [7,9].

U ≠ 0 Solutions: No-Go ‘Theorem’ For N > 2
Recall that, for turning on

 ln ( )  U g x
α

α α= −∑  With g Cα
α

=∑ 								                     (7.1)

In a given F background determined by { , }fαα , we need to solve the flatness condition (4.6). In principle, we may modify 
(4.6) by adding a homogeneous term homU  to the prepotential above, but let us postpone this option for the time being. Then, 
matching the coefficients of the double poles in (4.6) requires that

either 0gβ =  or else 1fββ β⋅ =  for each convector β							                  (7.2)

In the undeformed irreducible root-system solutions, the Weyl group identifies the fα  and gα  coefficients for all roots 
of the same length. Hence, besides the Lf  and sf  values in (5.4) we have couplings Lg  and sg  for a number Lp  and sp  of 
long and short positive roots, respectivelyb. This simplifies the trace of (5.3) to

22 L L s s L sn f f p f p p p n
rα

α

α α= ⋅ = + → + =∑  if , 0.L sg g ≠ 					                 (7.3)

Since the total number L sp p+  of positive roots always exceeds n (except for 1
nA⊕ ), we are forced to put either 0sg =  

or 0Lg = . Therefore, all simply-laced root systems are ruled out! For the 1r >  root systems, we get

         

Figure 5: Rhombic dodecahedron.

bFor explicitness, 
2 1L
n rh hp

r

∨ −
=

−
 and ( )

2 1s
n r h hp

r

∨−
=

−
, with the sum 

2L s
np p p h= + = .
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either 
(7.2)(7.3) 10,  g   0,  

2 2
L

s L s L
s

n prg g f f
p
−

= = → = ≤ = 						                  (7.4)

or 
(7.2)(7.3) 1,  0  ,  0.

2 2
s

s L s L
L

n prg g g f f
p
−

= = → = = ≤ 						                 (7.5)

We see that in the non-simply-laced one-parameter family (5.4) there is always one member which obeys (7.4) or (7.5). For 
it, we must still check the remainder of (4.6),

0.
( ) ( )

g f
x xα β

α β

α β β β
α β≠

⋅
⊗ =∑ 									                     (7.6)

Even though its trace is always satisfied, the traceless part is violated for any nontrivial root system with the data (7.4) or 
(7.5). Hence, there do not exist U solutions of the standard form (7.1) for any Coxeter root system. Perhaps this no-go result 
may be overcome by adding suitable homU  contributions. Certainly it can be avoided for 2n =  because in this case (4.4) may 
be relaxed (see below). Finally, we have not yet studied the flatness conditions for the deformed root systems of the previous 
section.

U ≠ 0 Solutions: Dihedral Solutions for n = 2
As mentioned before, the case of three particles with translation invariance, i.e. 2n = , is special for the absence of the 

WDVV equation. In fact, it is easy to see that any set { }α  of covectors can be made to obey the left condition in (4.2) with 
suitably chosen fα . To study concrete examples, we look at the most symmetric cases, namely the dihedral root systems 
mentioned earlier.

It is crucial that we take advantage of the freedom at n = 2 to add ‘radial terms’ in our ansatz:

2 21 1( )  ln ( )  ln (1 )1,
2 2 R RF f x x f R R f fα α

α α

α α α α= − − → ⊗ = −∑ ∑ 				                 (8.1)

 ln ( )  ln   .R RU g x g R g C gα α
α α

α= − − → = −∑ ∑ 						                 (8.2)

The flatness condition then reduces to (7.2) and the trace of (7.6) plus the relation ( ) 0R R Rg C g f+ − = . It is obeyed for 

the 2 ( )I p  system if ( ,  g ) : ( , )even odd S Lg g g=  when p is even and if :  g gα α= ∀  when p is odd. Turning on g couplings for 

all covectors fixes 1,fαα α⋅ =  and so we obtain

( )2 22(1 )    S L
R R

g g
p f g C C

for p even

p g for p oddp p


= − → = → = = 


∑ 			              (8.3)

In order to ease the interpretation as three-particle systems, we embed the relative-motion configuration space 2�  into 
3 1 2 3  ( , , )x x x∋�  and rotate such that (1,1,1).comα =  for identical particles we require invariance under permutations 
1 2 3 1 2 3( , , ) ( , , )x x x x x xπ π π→ of the full three-body coordinates. This limits p to multiples of 3. The ‘radial coordinate’ then 

becomes

2 12 2 23 2 31 2 1 2 2 2 3 2 1 2 2 3 3 11 2{( ) ( ) ( ) } {( ) ( ) ( ) }
3 3

R x x x x x x x x x x x x= = + + = + + − − − 			              (8.4)

Examples
For illustration we explicitly display the 2 ( )I p  solutions based on (8.1) and (8.2) for the first few values of p.

1 12 :  p A A= ⊕  model 0,  0,  R R S Lf g g g C= = → + =

1 2 1 2 3( ) 1 1( ),  ( 2 )
2 6

x x x x x xα
α α

 ∈ − + − 
⋅  

2 2
2 2

1 2 2 1 2 3 2

3( )
4 4

( ) ( 2 )

s L

B

g g
V

x x x x x

+ +
= +

− + −

 
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23 :  p A= 	 model 
1 1 2,    
2 3 9R Rf g C g C= − = → =

1 2 1 3 2 3( ) 1 1 1( ),  ( ),  ( )
2 2 2

x x x x x x xα
α α

 ∈ − − − 
⋅  

2
2 2 2

1 2 2 2 3 2 3 1 2 2

1 1 1 5 1( ) ( ) (9 )
4 ( ) ( ) ( ) 8BV g g

x x x x x x R
= + + + + −

− − −




24 :  BCp =  model 
1 11,   g
2 4R R s Lf g C g C= − = → + =

1 2 1 2 3 1 2 3 1 2 3( ) 2, , ,
2 6 3 3

x x x x x x x x x x x xα τ τ τ τ
α α

 − + − + − − + −
∈  

⋅  
 With 

( )
( )

1 3 1
2
1 3 1
2

τ

τ

 = +

 = +
2 2 2 2

2 2 2 2 2 2

1 2 2 1 2 3 2 1 2 3 2 1 2 3 2 2

3 3 33( ) ( ) ( ) 6( )
4 4 2 4 2 4 2

( ) ( 2 ) ( ) ( )

S S L L S L

B

g g g g g g
V

x x x x x x x x x x x Rτ τ τ τ

+ + + + + −
= + + + +

− + − − − + −

   


26 :  p G= 	 model	  
2 12,    
3 9R R S Lf g C g g C= − = − → + =

( ) 1 2 1 3 2 3 1 2 3 1 2 3 1 2 32 2 2, , ,  , ,
2 2 2 6 6 6

x x x x x x x x x x x x x x x xα
α β

 − − − + − + − − + −
∈  

⋅  
2 2

2 2

1 2 2 1 2 3 2

3(
4 4

( ) ( 2 )

S L

B

g g
V

x x x x x

+ +
= + +

− + −

 

 Cyclic 
2 2

2

36( ) 4S Lg g
R

+ −
+



212 :  (12)p I=  model 
5 15,  
6 36R R S Lf g C g g C= − = → + =

1 2 1 3 2 3 1 2 3 1 2 3 2 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

2 2 2, , , , , ,
( ) 2 2 2 6 6 6

, , , , ,
3 3 3 3 3 3

x x x x x x x x x x x x x x x
x

x x x x x x x x x x x x x x x x x x
α
α α τ τ τ τ τ τ τ τ τ τ τ τ

 − − − − − + − − + −
  ∈  

⋅ − − − − + − + − − + − − + − 
  

2 2 2 2
2 2 2 2 2 2

1 2 2 1 2 3 2 1 2 3 2 1 2 3 2 2

3 3 353( ( ) ( 630( )
4 4 2 4 2 4 2

( ) ( 2 ) ( ) ( )

S S L L S L

B

g g g g g g
V

x x x x x x x x x x x
cyclic

Rτ τ τ τ

+ + + + + −
= + + + + +

− + − − − −

   


Finally, let us investigate the effect of adding to U a homogeneous piece homU  for obtaining homtotU U U= + . At 2n = , 
all we have to solve is the trace of the flatness condition,

hom hom 0
( )

U f U
a xα

α

αα α ⋅∂
∂ ⋅∂ + ⋅ =∑  besides 1

hom 0.ix U∂ = 						                 (9.1)

It is convenient to pass to polar coordinates on 2�  via 1 2( , ) ( cos , sin )x x R Rφ φ= . In the dihedral class 2 ( )I p , the 
sum over the roots can be performed, and the flatness conditions for U and for homU  is solved by

 ln cos( )
( , ) ln

 ln cos( ) ln sin( )
2 2S L

g p for p odd
U R C R p pg g for p even

φ
φ

φ φ


= − − 

+


 				                  (9.1)
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hom ( ) ln tan( ) ln tan( )
2 2
p pU

p
λφ φ δ φ δ= + +  with 4

0

for p odd

for p even

π
δ


= 


 			                (9.2)

After lifting to the full configuration space 3�  as in Figure 6, we arrive at
2 3

3 1 2 1
2

1 2

2 ( ( ))
( )

pi i
i tot

x x
xpU g C x x R x

x p R
x x

α
α α

α λ α
α

− −

 −
 −

∂ = − − + − 
 − 

∑ ∏ 					                (9.3)

For the A2 model as the simplest example, one gets

( )212 12 23 2 23 31 2 31 21 1( ln ( ) ln ( ) ln ) ln
4 4

F x x x x x x R R= − + + + 				               (9.4)

31 12 23 1

12 23 31 1 12 23 31 12 2

23 31 12 3

[ ( )]
3[ ] [ ( )] ,
2

[ ( )]
tot

R g x x x x
U x x x R g x x x gR x

R g x x x x

λ

λ

λ

→
− −

   − −
   

∇ = − − −   
   − −   

					                   (9.5)

2
2 2

12 2 23 2 31 2

12 23 23 31 31 12
2 2 2

12 23 31 2

2 1 1 1( )
3 4 ( ) ( ) ( )

5 ( )( )( )(9 ) ,
8 ( )

tot
BV g

x x x

x x x x x xg R gR
x x x

λ

λ−

 
= + + + + 

 
− − −

+ − +





					                (9.6)

with 2 12 2 23 21{( ) ( ) }
3

R x x= + . A pure Calogero potential is possible only for 0g = =  .
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