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Introduction
A general theory of free energies for dielectric mate-

rials under isothermal conditions was given recently [1]. 
The present work presents more detailed formulae and 
results for free energies in non-magnetic isotropic mate-
rials. We shall derive expressions for the minimum, max-
imum and other intermediate free energy functionals 
which also have an extremum property. Two approaches 
are possible: (1) To present the developments as in me-
chanics [2], based explicitly on thermodynamics; and 
(2) To use the method given independently [3-5] for di-
electric materials with memory, but with quite different 
methods, notation and terminology. In this work, as in 
[1], the fist approach will be adopted but with reference 
to the connection between the two methods. The inter-
mediate free energies are analogous to quantities known 
in mechanics [2]. They are new and particularly physical-
ly relevant in the context of dielectrics, in that they apply 
to memory models that are standard for such materials, 
but not usually applied to viscoelastic behaviour.

Applications of the results of this work, from a phys-
ical point of view, include the establishment of bounds 
on the level of dissipation in the material, using the fact 
that the total dissipation associated with the minimum(-
maximum) free energy is an upper(lower) bound on the 
actual physical dissipation.

On the matter of notation, vectors and tensors are 

denoted by lowercase and uppercase boldface characters 
respectively and scalars by ordinary script. The real line 
is denoted by  , the non-negative reals by +  and the 
strictly positive reals by ++ . Similarly, −  is the set 
of non-positive reals and −−  the strictly negative reals. 
Complex quantities arise in the frequency domain so we 
have complex vector spaces for which the dot product in-
volves using the complex conjugate of objects in the dual 
space. The magnitude squared, denoted by 2.  refers to the 
dot product of objects with their complex conjugates.

General Relations
Consider a rigid non-magnetic isotropic dielectric 

material subject to a varying electric field. Let the body 
under consideration occupy a volume 3⊂  . A typi-
cal point in B is x while t is a given time. The electric field 
on this region is E(x,t), with electric displacement denot-
ed by D(x,t). The magnetic field and induction contri-
butions are neglected. The space variables are generally 
omitted.

Abstract
An isothermal theory of free energies and free enthalpies, corresponding to linear constitutive relations with memory, is 
presented for isotropic non-magnetic materials. This is a second paper, following recent work on a general tensor theory of 
isothermal dielectrics and on the form of the minimum free energy. Both papers are based on continuum thermodynamics. 
For a standard choice of relaxation function, the minimum and maximum free energies are given explicitly, using a method 
previously developed in a mechanics context. Also, a new family of intermediate free energy functionals is derived for 
dielectrics. All these are solutions of a constrained optimization problem.
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Let ( )tψ  be any free energy of the material, for the 
isothermal case, and D(t) the rate of dissipation. Then 
the first and second laws of thermodynamics can be writ-
ten as [1]

.
+ = D.Eψ D , 0D ≥ .         (3.1)

Let 3E : = t +
    be defined bya

( ) ( )E  = E ,  t s t s s  +− ∈ .         (3.2)

Equation (3.2) gives the history and also the current 
value E(t) of the electric field. A given future continua-
tion is denoted by

( ) ( )E  = E ,   t s t s s −−− ∈  .        (3.3)

Let us define the free enthalpy [1] as

= D.Eψ − .          (3.4)

In terms of this quantity, (3.1) becomes
. .

 = -D.E,  0D D+ ≥ .         (3.5)

The relative history Et
r  is defined by

( ) ( ) ( )E  = E -Et t
r s s t .         (3.6)

A relative future continuation is also defined by (3.6) 
for s −−∈ .

We define the equilibrium free enthalpy ( )e t  to be 
that given for the static history ( ) ( )E  = E ,  t s t s +∈ . 
Therefore,

( ) ( )( ) = Ee et t  .                                                (3.7)

emphasizing that the function ( )e t  depends only 
on E(t).

A. Required properties of a free enthalpy

Let us state the characteristic properties of a free en-
thalpy, provable within a general framework [1,6-8]:

P1: ( )( )  = D
( )
t t
t

∂
−

∂

Λ

.         (3.8)

P2: For any history Et
a  and current value ( )Ea t

( )( ) ( )( )E ,E Et
a a e at t≥   .         (3.9)

P3: Condition (3.5) holds.

These will be referred to as the Graffi conditions by 
analogy with those for a free energy in mechanics ([2] 
for example).

A Linear Memory Model
A special case of the linear model introduced in [1] 

is described in this section. This is the material consid-

ered in [3-5], namely a passive, homogeneous isotropic 
non-magnetic dielectric. All kernels are scalar quantities. 
We have

( ) ( ) ( ) ( ) ( )12
0 0

1 = E . , E
2

t t
e r rt t s G s u u dsdu

∞ ∞

− ∫ ∫     (4.1a)

( ) ( ) ( )
0 0

1 E . ( , ) E
2

t t
e t s G s u u dsdu

∞ ∞

= − ∫ ∫   ,     (4.1b)

( ) ( ) ( )1 = - E .E
2e t G t t∞ ,        (4.1c)

where (4.1b) follows from (4.1a) by partial integra-
tions. Also

( ) ( ) ( ) ( )E  = E  = - E  = - Et t t t
ru u u u

t t t
∂ ∂ ∂
∂ ∂ ∂

 .     (4.2)

( ) ( ),  = , -G s u G s u G∞
 , and

( ) ( )
2

12,   ,G s u G s u
s u
∂

≡
∂ ∂

,       (4.3a)

( )lim ,  = ,  
s

G s u G u +
∞→∞

∈ ,      (4.3b)

( )lim ,  = 0,  
s

G s u u
u

+

→∞

∂
∈

∂
 ,      (4.3c)

( )lim ,  = 0,  
s

G s u u
s

+

→∞

∂
∈

∂
 ,      (4.3d)

( ) ( ),  = ,G s u G u s ,       (4.3e)

with similar limits at large u holding for fixed s. The 
parameter G∞  in (4.1a) is defined by (4.3b). Relation 
(3.8) gives the linear constitutive relation

( ) ( ) ( ) ( )
0

D  = E + Et
rt G t G u u du

∞

∞ ′∫       (4.4a)

( ) ( ) ( )0
0

 E + EtG t G u u du
∞

′= ∫       (4.4b)

( ) ( ) ( )
0

 E + EtG t G u u du
∞

∞= ∫         (4.4c)

( ) ( )
0

 EtG u u du
∞

= ∫  ,       (4.4d)

where

( ) ( ) = 0,G u G u ,        (4.5a)

( ) ( )0  = 0,0  = 0G G G ,       (4.5b)

( ) ( ) = -G u G u G∞
 ,       (4.5c)

( ) ( ) = dG u G u
du

′ .       (4.5d)

The quantity G(s) is the relaxation function of the ma-
terial. In writing the final form of (4.4), we are assuming 
that ( ) ( )E  = Et−∞ ∞  vanishes; we furthermore assume 

aThis quantity would be denoted as ( )Et s−  in [3-5], while the 
future continuation, defined by (3.3), would be written as ( )Et s+ . 
The future continuation is referred to in [3] as the recovery field.
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where, using (4.4b), one sees that the polarization P(t) 
is given by the causal relationship

( ) ( ) ( ) ( ) ( )
0

P   E   E
t

tt G u u du G t s s ds
∞

−∞

′ ′= = −∫ ∫ . (4.15)

Then, (4.11a) becomes

( ) ( ) ( ) ( ) ( ) 2
0 0 0

1,    E
2intW t t W t t tφ φ ∈+ = ,     (4.16)

where ( )0 tφ  is the quantity introduced in (4.10) and 
( )intW t  is given by

( ) ( ) ( )  P .E
t

intW t s s ds
−∞

= ∫  ,      (4.17)

is the accumulation of energy (density) transferred to 
the medium at the point under consideration, from the 
beginning of the pulse-medium interaction until time t. 
We can write (4.12) as

( ) ( ) ( )  int intt t W tψ + =D ,      (4.18)

where ( )int tψ  is given by the integral term in (4.9a).

A. Minimal states

The fundamental definition of the state of a material 
with memory at time t is the history of the independent 
field variable and its current value (Et, E(t)). Also, different 
histories may be members of the same minimal state [1]. 
Two states ( )( )1 1E ,Et t , ( )( )2 2E , Et t  are equivalent, or in the 
same minimal state if from a time t onwards, we have

( ) ( ) ( ) ( )1 2 1 2D   D  if  E   E ,  so 0t s t s t s t s s+ = + + = + ≥  (4.19)

Where D1, D2 are defined by (4.4) for these states. 
Then it follows that

( ) ( ) ( )( )1 2
0

E E   0,  0t tG s u u u du s
∞

′ + − = ≥∫   (4.20)

A fundamental distinction between materials is that 
for certain relaxation functions, namely those with only 
isolated singularities (in the frequency domain), the set 
of minimal states is non-singleton, while if some branch 
cuts are present in the relaxation function, the material 
has only singleton minimal states [2,9]. For relaxation 
functions with only isolated singularities, there is a maxi-
mum free energy that is less than the work function W(t) 
and also a range of related intermediate free energies, 
which are discussed later. On the other hand, if branch 
cuts are present, the maximum free energy is W(t).

In this work, we will deal exclusively with the case 
where the relaxation function has only isolated singular-
ities, so that the minimal states will be non-singleton.

For such materials, the free energy functional is posi-
tive semi-definite ([2], page 152).

Note that the statement that ( )( )1 1E , Et t  and ( )( )2 2E ,Et t  
are equivalent is the same as the assertion that ( )E ,0t

d  is 

that it goes to zero sufficiently strongly so that various 
integrals, introduced below, exist. The quantity G∞  is re-
lated to the relaxation function through

( ) ( ) ( ) = ,  = 0,  = G G s G G∞ ∞ ∞ ∞ .       (4.6)

We deduce from (3.5), (4.1a) and the time derivative 
of (4.1b) that

( ) ( ) ( ) ( ) ( )1 2
0 0

1 = E . , , E
2

t tD t s G s u G s u u dsdu
∞ ∞

+  ∫ ∫    (4.7a)

( ) ( ) ( ) ( )112 212
0 0

 E . , , Et t
r rs G s u G s u u dsdu

∞ ∞

= +  ∫ ∫ ,   (4.7b)

where subscripts refer to partial differentiation with 
respect to the first or second argument. Equation (4.7b) 
follows from (4.7a) by partial integrations, using (4.1a), 
(4.3), and the fact that ( )0t

rE  vanishes. Relation (4.1a), 
expressed in terms of histories, becomes

( ) ( ) ( ) ( ) ( )0
1 = E .E -D .E
2

t G t t t t        (4.8)

( ) ( ) ( )12
0 0

1 E . , E
2

t ts G s u u dsdu
∞ ∞

− ∫ ∫ .

From (3.4), (4.2) and (4.8), we deduce that

( ) ( ) ( ) ( ) ( )0 12
0 0

  E . , Et tt t s G s u u dsduψ φ
∞ ∞

= − ∫ ∫  (4.9a)

( ) ( ) ( ) ( )12
0 0

1 E . , E
2

t t
r rU t s G s u u dsdu

∞ ∞

= − ∫ ∫ ,       (4.9b)

( ) ( ) ( ) ( )
0 0

1 E . , E
2

t tU t s G s u u dsdu
∞ ∞

= − ∫ ∫   ,     (4.9c)

Where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
1 1  E .E ,    D .E E .E
2 2

t G t t U t t t G t tφ ∞= = −   (4.10)

The integral terms, with the negative signs included, 
are non-negative [1]. The total work done by the electric 
field up to time t is

( ) ( ) ( )  D .E
t

W t u u du
−∞

= ∫                    (4.11a)

( ) ( ) ( ) ( ) D .E D .E
t

t t u u du
−∞

= − ∫  .   (4.11b)

Under the assumption that ( )  = 0ψ −∞ , an integra-
tion of (3.1) over ( ), t−∞  yields

( ) ( ) ( )  t t W tψ + =D ,       (4.12)

Where

( ) ( )  0
t

t D u du
−∞

= ≥∫D        (4.13)

is the total dissipation up to time t. We take 0G  to be 
equal to the vacuum permittivity 0∈  [3-5], giving

( ) ( ) ( )0D   E Pt t t∈= + ,       (4.14)
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We can write the Fourier transforms of ( )G u′  and 
( )G u  in (4.4) as

( ) ( ) ( ) ( ) ( ) ( )      c s c sG G iG iχ χ χω ω ω ω ω ω+ +′ ′ ′= − = = − , (5.6)

( ) ( ) ( )  c sG G iGω ω ω+ = −   .

The quantity ( )χ ω+  is the susceptibility, denoted by 
( )χ ω  in [3-5]. By partial integration, one can show that

( ) ( ) ( )0  G G G i Gω ω ω++ ∞′ = − − +  ,       (5.7)

giving, in particular, that

( ) ( ) ( )    s csG Gω ω ω ωχ == −  .        (5.8)

Observe that

( ) ( ) 0
0

0     G G s ds G G
∞

+ ∞′ ′= = −∫ .         (5.9)

Using (5.2), we see that

( ) ( ) ( ) ( )      GG ω ω ωχ ωχ+ + + +′ =′ −= −= ,  (5.10)

which will be useful later. By considering periodic be-
havior in ( )tE s , we can show that a consequence of the 
second law is that ([2], page 140)

( ) ( ) ( )    0,  0s s cG Gω ω ωχ ω ω′ = = − > < < ∞ ,    (5.11)

It follows from (5.11) that 0G G∞ >  [1]. We have 
0 0  0G = ∈ > , so that 0G∞ > .

B. The complex frequency plane and the function 
H(ω)

We will be considering frequency domain quantities, 
defined by analytic continuation from integral defini-
tions, as functions on the complex ω plane, denoted by 
Ω, where

[ ]{ }  | Imω ω+ +Ω = ∈Ω ∈

( ) [ ]{ }  | Imω ω+ ++Ω = ∈Ω ∈ .

Similarly, Ω− and Ω(−) are the lower half-planes in-
cluding and excluding the real axis, respectively.

The quantities ( )f ω± , defined by (5.1), are analytic 
in Ω(∓) respectively ([2], page 547). Thus, the quantity 

( )G ω+′  is analytic on Ω(−). It will be assumed that ( )G ω+′  
is analytic on   and thus on Ω−, or more precisely, on 
an open set containing Ω−. Also, it will be taken to be 
analytic at infinity. This function is defined by analytic 
continuation in regions of Ω+ where the Fourier integral 
does not converge. The quantity ( )sG ω′  has singularities 
in both Ω(+) and Ω(−) that are mirror images of each oth-
er. It goes to zero at the origin and must also be analytic 
there. A quantity central to our considerations is defined 
by

( ) ( ) ( ) ( )2      s s cH G Gω ω ω ω ω ωχ ω′= = = −  . (5.13)

It is a non-negative, even function of the frequency 

equivalent to the zero state (0,0), where 0 is the zero in 
3  (and also the zero history), while

( ) ( ) ( )1 2E   E Et t t
d s s s= − .       (4.21)

A functional of (Et, E(t)) which yields the same val-
ue for all members of the same minimal state will be re-
ferred to as a functional of the minimal state (abbreviat-
ed to FMS) or as a minimal state variable.

Let ( )( )1 1E ,Et t , ( )( )2 2E ,Et t  be any equivalent states. 
Then, a free energy is a functional of the minimal state if

( )( ) ( )( )1 1 2 2E ,E   E , Et tt tψ ψ= .

It is not necessary that a free energy have this proper-
ty, though it holds for the minimum and all related free 
energies introduced later.

Kernels and Field Variables in the Frequency 
Domain

For any ( )2f L∈  , we denote its Fourier transform 
( )2

Ff L∈   byb

( ) ( )  di
Ff f e ωω

∞
− ξ

−∞

= ξ ξ∫        (5.1a)

( ) ( )=  f fω ω+ −+ ,        (5.1b)

( ) ( )
0

  if f e dωξω ξ ξ
∞

−
+ = ∫ ,        (5.1c)

( ) ( )  if f e dωξω ξ ξ
∞

−
−

−∞

= ∫ ,       (5.1d)

Only real valued functions will be considered so that

( ) ( )  ,  F Ff fω ω ω= − ∈         (5.2)

Where the bar denotes the complex conjugate. For 
complex values of ω , (5.2) becomes

( ) ( )  F Ff fω ω= − .          (5.3)

Functions defined on +  are identified with func-
tions on R which vanish identically on −− . For such 
functions,

( ) ( ) ( ) ( )    F c sf f f ifω ω ω ω+= = − ,              (5.4)

Where ( )cf ω , ( )sf ω  are respectively the Fourier co-
sine and sine transforms. A property of Fourier trans-
forms which will be used later is

( ) ( ) ( ) ( )0 0
,  so that  s

f f
f f

iω ωω ω
ω ω+ →∞ →∞→ →    (5.5)

If ( )  is non-zero.

A. The kernel G(u)

bThe quantity ( )Ff ω , defined by (5.1), would be denoted in [3-5] 
by ( )ˆ2 fπ ω−  or ( )ˆ2 fπ ω  for real ω .
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where U(t) and ( )0 tφ  are defined by (4.10). We see 
from (6.1) that W(t) can be cast in the form (4.9) by put-
ting

( ) ( )12 12,   G s u G u s= − .         (6.2)

In terms of frequency domain quantities, we find that 
[1]

( ) ( ) ( ) ( ) ( )1  E . E
2

t t
r rW t U t H dω ω ω ω

∞

+ +
−∞

= −
π ∫ ,

( ) ( ) ( ) ( )0
1 E . E

2
t tt H dφ ω ω ω ω

∞

+ +
−∞

= +
π ∫ .   (6.3)

The quantity W(t)-D(t)·E(t) can be shown to obey the 
properties specified in subsection III A of a free enthalpy, 
with zero dissipation. Because of the vanishing dissipa-
tion, it must be the maximum free energy associated with 
the material or greater than this quantity, an observation 
which follows from (4.12). For relaxation functions with 
only isolated singu-larities, as introduced later, there is a 
maximum free energy which is a functional of the mini-
mum state and is less that W(t).

Consider the scalar product on the function space of 
electric fields, defined by [2,5,9-12]

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2E ,E   E ,E   E . Et t t t t t
F F s G s u u dsdu

∞ ∞

−∞ −∞

= = −∫ ∫  (6.4a)

( ) ( ) ( ) ( ) ( )1 2 2 1 2 1
1 E . E   E ,E  = E ,E

2
t t t t t t
F F F FH dω ω ω ω

∞

−∞

= =
π ∫  (6.4b)

Recalling (5.1), we see that the quantity ( )Et
F ω  is the 

Fourier transform of ( )Et s , s ∈  in the time domain. 
Also, the subscript F in the bracket notation indicates 
that the frequency domain version is being used. The re-
lated norm is

( ) 2 2
E ,E   E   Et t t t

F= = .        (6.5)

In the notation of (6.5), the work function is given by

( ) ( ) 2
  Et

rW t U t= +        (6.6a)

( ) 2

0 Ettφ= + ,        (6.6b)

where ( )E   0t
r s = , s −−∈  in (6.6a) and 

( )E   0t s = , s −−∈  in (6.6b).

Factorization of H (ω)
We consider materials such that ( )G ω+′  (or ( )G ω

+
 ) 

has only a finite number of isolated singularities in Ω(+). 
Thus, H(ω) has only isolated singularities in Ω(±), which 
are mirror images of each other in the real axis, as as-
cribed to ( )sG ω′  before (5.13)). This means that it can be 
put in the form of a ratio of polynomials. We will take the 
singularities to be a finite number of simple poles. The 
quantity H(ω) has a finite number of zeros in Ω±(ω), also 

and goes to zero quadratically at the origin. The relation 
(see (5.5))

( ) ( ) ( )lim   lim   0si G G G
ω ω

ω ω ω ω+→∞ →∞
′ ′ ′= =    (5.14)

yields

( ) ( )0     G H H∞′ = ∞ = .       (5.15)

For the model considered later, H(ω) goes to zero at 
large ω so that H∞ = 0. The Fourier transforms of the 
history and continuation are denoted by ( )Et ω+  and 

( )Et ω−
 respectivelyc. These are particular examples of 

(5.1c) and (5.1d). The quantity ( )Et ω+  is analytic on 
Ω(−) and ( )Et ω−  is analytic on Ω(+). Both are assumed 
to be analytic on an open set including  . It is further 
assumed that they are analytic at infinity.

The Fourier transforms of the relative history and 
continuation, defined by (3.6), have the form

( ) ( ) ( )E
E   Et t

r

t
i

ω ω
ω± ±=



,       (5.16)

where the notation ω± is defined as ω ± iα, α > 0. The 
parameter α is assumed to tend to zero after any integra-
tions have been carried out (see for example [2], page 
551). We have

( ) ( ) ( ) ( ) ( )E   E  = - E E  = - Et t t t
r

d i t i
dt

ω ω ω ω ω ω+ + + += +  (5.17)

The second relation follows from (3.2) and an inte-
gration by parts in the Fourier integral defining ( )Et ω+

. 
Also, based on arguments from [1] and [2], page 146, for 
example, we can express the constitutive equation (4.4) 
in the form

( ) ( ) ( ) ( )D  = E Et
r

Hit G t d
ω

ω ω
ω

∞

∞ +
−∞

+
π ∫

( ) ( ) ( )2

1 E Et
r

H
G t d

ω
ω ω

ω

∞

∞ +
−∞

= −
π ∫        (5.18)

( ) ( ) ( )0 E EtHiG t d
ω

ω ω
ω

∞

+
−∞

= +
π ∫

The Work Function
Various forms for the work function, defined by (4.11), 

are given for the general tensor case in [1]. Those required in 
this work for scalar kernels are summarized here. The anal-
ogous mechanics version of these relations may be found in 
[2], page 153, for example. It can be shown that

( ) ( ) ( ) ( ) ( )12
0 0

1  E .E
2

t t
r rW t U t G u s u s dsdu

∞ ∞

= − −∫ ∫

( ) ( ) ( ) ( )0 12
0 0

1 E .E
2

t tt G u s u s dsduφ
∞ ∞

= − −∫ ∫ ,     (6.1)

cReferring to footnote a, we see that ( )Et
r ω±  would be denoted 

in [3-5] by ( )ˆ2 Et
rπ ω−


.
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pathways leading from the minimum to the maximum 
free energy.

The most general free energy and rate of dissipation 
arising from these factorizations is given by

( ) ( ) ( ) ( )
1 1 1

 ,   ,   1,  0
N N N

f f f f f f
f f f

t t D t D tψ λ ψ λ λ λ
= = =

= = = ≥∑ ∑ ∑ . (7.4)

A particular case of this linear form is the free energy 
proposed in [11].

Remark VII.3. The set of all free energies at time t 
associated with a given material is denoted by Φ(t). The 
boundary of this set is where one or more of the fun-
damental properties listed in subsection III A is break-
ing down; an example, which will arise later, would be 
where, for a given non-zero history, the rate of dissipa-
tion is zero, so that a small shift in its kernel parameters 
results in it becoming negative.

All the ( )f tψ  emerge from extremum arguments. 
This is apparent in the case of the minimum free energy 
for a given state, which is obtained by finding an optimal 
continuation ( )Et

m s , s −∈  yielding the maximum 
recoverable work from this state. Also, the maximum 
free energy is determined by finding the optimal histo-
ry ( )Et

M s , s +∈  which minimizes the work done to 
achieve the given state. It must be an equivalent state to 
the given history. In other words, the two histories must 
be in the same minimal state. The intermediate free en-
ergies are also obtained from an extremum principle, but 
involving an optimization of the history/continuation 
Et(s), s ∈ , as we shall see in section VIII.

The relevant theoretical developments motivating the 
results of section VIII are presented in [2], chapter 15 for 
mechanics; they also apply to dielectrics. We will pres-
ent an abbreviated version of these arguments, and also 
demonstrate that the functionals which emerge are in 
fact free energies, with the required properties. It can be 
shown that all these quantities, including the intermedi-
ate functionals, are on the boundary of Φ(t) for the mate-
rial ([2], page 365), which is consistent with the fact that 
they emerge from an extremum principle. This property 
is discussed briefly below.

mirror images of each other. It is real and non-negative 
on  , an even function of ω and therefore a function of 
ω2, in view of its analyticity about the origin. It vanishes 
quadratically at the origin. This non-negative quantity 
can be factorized in general as outlined in [2,13]. Thus, 
we have that

( ) ( ) ( )  H H Hω ω ω+ − = ,        (7.1)

where

( ) ( ) ( )    H H Hω ω ω± = − =
 

      (7.2a)

( ) ( ) 2
  ,  H Hω ω ω±= ∈ .      (7.2b)

The factorization (7.1) is unique up to multiplication 
by a phase factor eiα, where α is a constant. Relation (7.2a) 
reduces this arbitrariness to multiplication by a factor ±1.

The factorization (7.1) is equivalent to a homogeneous 
Riemann-Hilbert problem on the half-plane [1,3-5].

The quantity H+(ω) (H−(ω)) has all its singularities 
in Ω(+) (Ω(−)) and all its zeros in Ω+ (Ω−) ([2], page 239). 
There are many other factorizations, obtained by inter-
changing some or all of the zeros of H+(ω) and H−(ω), 
while retaining the same singularity structure. The differ-
ent factorizations are labeled by the subscript or super-
script f. We have

( ) ( ) ( )  f fH H Hω ω ω+ −= ,      (7.3a)

( ) ( ) ( )    f f fH H Hω ω ω± ±= − =


.      (7.3b)

Certain types of exchanges must be excluded to en-
sure that (7.3b) are true [11], ([2], page 338). Each fac-
torization generally yields a different free energy, though 
there may be exceptions. All these free energies are FMSs 
[2]. The factorization with no exchange of zeros, which 
is that given by (7.1), yields the minimum free energy 
ψm(t).

Remark VII.1. Each exchange of zeros, starting from 
these factors, can be shown to yield a free energy which is 
greater than or equal to the previous quantity ([2], page 
363).

Note that the zeros of ( )fH ω±  at the origin play no 
part in these exchanges.

Remark VII.2. A particularly interesting choice of 
( )f tψ , which we denote by ( )M tψ , is obtained by in-

terchanging all the zeros. This can be identified as the 
maximum free energy among all those that are FMSsd. 
It is less than the work function, which is not a FMS for 
materials with only isolated singularities [2].

If there are N different factorizations of H(ω), then f = 
N is chosen to denote the maximum free energy.

Note that there are several (indeed many, for a large 
number of isolated singularities) different zero exchange 

dThe minimum and maximum free energies are given also in 
[5]. The intermediate free energies, introduced in this work, 
have not been discussed previously in the context of dielec-
trics, but are analogous to those derived in mechanics in for 
example [2,10-12].
eThis behavior, while often used to describe memory behav-
ior of dielectrics, is not usually applied to viscoelastic mate-
rials. The singularity structure given by (9.4) corresponds to 
exponential decay with sinusoidal behavior in the time domain, 
while viscoelastic materials are generally modeled by simple 
exponential decay, which in the frequency domain yields sim-
ple poles on the positive imaginary axis.
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The optimization problem which yields the free en-
ergy functional associated with a given factorization of 
H(ω) is given as follows ([2], pages 346, 350). We mini-
mize 

2
Et

FR , subject to the constraint

( ) ( ) ( )' E '1u   '   0
2 '

f t
dFft H

d
i

ω ω
ω ω

ω ω

∞
−

− +
−∞

= =
π −∫ .  (8.9)

The resultant free energy is

( ) ( ) 2

0  Et
f ft tψ φ= + ,       (8.10)

where Et
f  is the history/continuation Et

RF  that is 
the solution of the constrained minimization problem. 
The formulation of this problem is discussed at length 
in [2], chapter 15 and earlier papers. In particular, it is 
shown that each ( )f tψ  has all the required properties 
of a free energy, which will in any case be shown later for 
the present context.

Using (8.6), (8.7c) and (8.9) in (8.5) together with 
proposition 1 of [1], we find that

( ) ( ) ( ) ( )E   q qf t ft ft
dFH ω ω ω ω− + += − R ,           (8.11a)

( ) ( )
2

2 1E   q q
2

t ft ft dω ω ω
∞

− +
−∞

= −
π ∫RF R             (8.11b)

( ) ( )2 21 q + q
2

ft ft dω ω ω
∞

−
−∞

 =   π ∫ R+
,                  (8.11c)

where ( )q ft ω+R  is given by (8.8). Since ( )q ft ωR-  
depends only on the given history ( )Et ω+ , the solution 
to the minimization problem is obtained by choosing 

( ) ( )E   Et t
RF fω ω=  to give that

( )+q   0ft ω =R ,        (8.12)

yielding

( )
2

2 1E   q
2

t ft
f dω ω

∞

−
−∞

=
π ∫ .      (8.13)

From (8.11a) and (8.12), we obtain that
( ) ( ) ( ) ( ) ( ) ( ) ( )E   E E   qf t f t f t ft

dF RFH H Hω ω ω ω ω ω ω− − − + += − = .  (8.14)

Then, (8.4a) gives

( ) ( ) ( ) ( ) ( )E   E   qf t f t ft
RF fH Hω ω ω ω ω− − −= = ,   (8.15)

and

( ) ( )
( ) ( )

( ) ( )q ' E '1E     '
2 '

ft f t
t
f f f

H
d

H iH
ω ω ω

ω ω
ω ω ω ω

∞
− − +

+
− − −∞

= =
π −∫ .(8.16)

The observation after (8.4) about the singularities of 
( )ftq ω−  and ( )fH ω−  yield that the singularity structure 

of ( )Et
f ω  is determined by the zeros of ( )fH ω− .

Remark VIII.1. Note that for 1f ≠ , N, the quantity 
( )fH ω−  has some of its zeros in Ω− and some in Ω+. For f 

= 1, all the zeros of ( )fH ω−  are in Ω−, so that ( )Et
f ω  has 

The Free Energy Associated with a Particular 
Factorization

Let us define the quantities ( )Et
R s  and ( )Et

d s  by 
the relation

( ) ( ) ( )E   E E ,  t t t
ds s s s= + ∈R  ,        (8.1)

where ( )Et s  is the given history, which is zero for 
s −−∈ . The quantity Et

R  is typically non-zero on   
and Et

d  follows from (8.1). In the frequency domain, the 
relation becomes

( ) ( ) ( ) ( ) ( )E   E E   E E ,  t t t t t
F dFω ω ω ω ω ω+ − +≡ + = + ∈R R R ,  (8.2)

where the quantities ( )Et ω±R  are particular cases of 
(5.1c) and (5.1d). Consider the norm 

2 2E   E F=R R

, defined by (6.5). This can be written in a form similar to 
the quantity W(∞) in [1], from which the minimum free 
energy was deduced. We have, from (6.4b) and (6.5), that

( ) ( ) ( ) ( ) ( )2 1E   E E . E E
2

t t t t t
F dF dFH dω ω ω ω ω ω

∞

+ +
−∞

   = + +  π ∫R . (8.3)

Let us choose a particular factorization of H(ω), as 
given by (7.3). Also, we define [1]

( ) ( ) ( ) ( )E q qf t ft ftH ω ω ω ω− + − +− − ,      (8.4a)

( ) ( ) ( )' E '1q   '
2 '

f t
ft H

d
i

ω ω
ω ω

ω ω

∞
− +

±
−∞

=
π −∫ 

.       (8.4b)

where the ( )q ft ω±  are analytic in Ω∓, respectively. The 
singularities of ( )q ft ω−  are the same as those of ( )fH ω− , as 
may be perceived by closing the contour in (8.4b) on Ω(−). 
Singularities on the real axis are excluded by assumption. 
Using the factorization in (8.4), we can express 

2ERF  
in the form

( ) ( ) ( ) ( )
2

2 1E   q q E
2

t ft ft f t
F dFH dω ω ω ω ω

∞

− + −
−∞

= − +
π ∫R . (8.5)

Let us further define

( ) ( ) ( ) ( )E   u uf t ft ft
dFH ω ω ω ω− − += − ,

( ) ( ) ( )' E '1u   '
2 '

f t
dFft H

d
i

ω ω
ω ω

ω ω

∞
−

±
−∞

=
π −∫ 

       (8.6)

Note that, by virtue of Cauchy’s integral formula,

( ) ( ) ( ) ( )u   q Eft ft f t
d dHω ω ω ω− − − −= +      (8.7a)

( ) ( ) ( ) ( ) q q Eft ft f t
dHω ω ω ω− − − −= − +R ,     (8.7b)

( ) ( ) ( ) ( )u   q   q qft ft ft ft
dω ω ω ω+ + + += = −R ,     (8.7c)

Where ( )q ft
d ω±  are the quantities defined by (8.4b) 

but with ( )E 't ω+  replaced by

( ) ( ) ( )E '   E ' E 't t t
d ω ω ω+ + += −R . Also,

( ) ( ) ( )' E '1q   '
2 '

f t
ft H

d
i

ω ω
ω ω

ω ω

∞
− +

±
−∞

=
π −∫ 

R
R .       (8.8)
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( ) ( )lim q   Kft
fi t

ω
ω ω+→∞

= ,                                (8.19a)

( ) ( ) ( )( )lim q   K Eft
f sri t H t

ω
ω ω−→∞

= − ,       (8.19b)

( ) ( )1 1q   K
2 2

ft
fd tω ω

∞

+
−∞

± = −
π ∫ ,                  (8.19c)

( ) ( ) ( )( )1 1q  K E
2 2

ft
f srd t H tω ω

∞

−∞

± = − −∫ . (8.19d)

Remark VIII.2. For the material considered in section 
IX, the quantity H(ω) vanishes for large values of ω. Thus, 
Hsr in (8.18) and (8.19) is zero. Also,

( )H
  0

f ω
ω

∞
−

−∞

=∫ ,        (8.20)

as can be seen by closing the contour on Ω(+), so that, 
recalling (5.16), it is clear that (8.18c) is replaced by

( ) ( ) ( )1K   E
2

f t
f t H dω ω ω

∞

− +
−∞

=
π ∫ .     (8.21)

The work function, given by (6.3), takes the form [1]

( ) ( ) ( ) ( )2 2

0
1  q q

2
ft ftW t t dφ ω ω ω

∞

− +
−∞

 = + +  π ∫ .  (8.22)

From (4.12), (8.17) and (8.22), we deduce that the to-
tal dissipation corresponding to the minimum free ener-
gy is given by

( ) ( ) ( )
2

1    q
2

t
ft

f fD t D u du dω ω
∞

+
−∞ −∞

= =
π∫ ∫ .  (8.23)

Differentiating this relation with respect to t and us-
ing (8.18a), (8.19c), gives

( ) ( ) 2
  Kf fD t t=        (8.24)

Since Kf(t), given by (8.21) can vanish for non-zero his-
tories, Df(t) is a positive semi-definite rather than a positive 
definite quadratic form, as noted in remark VIII.1.

We can re-express these results in terms of relative 
histories [1]. Let us put

( ) ( ) ( ) ( ) ( )P   E   p pft f ft ft ft
rHω ω ω ω ω− + − += = − ,

( ) ( ) ( ) ( )
( ) ( )P1 1p     q E

2 2

ft f
ft ft H

d d t
i

ω ω
ω ω ω ω

ω ω ω ω ω

∞ ∞
−

± ±
−∞ −∞

′ ′
′ ′= = +

′π − π ′ ′ −∫ ∫



. (8.25)

By closing the contour on Ω+, it emerges that

( ) ( ) ( ) ( )p   q E
f

ft ft H
t

i
ω

ω ω
ω

−
− −= − ,                  (8.26a)

( ) ( )p   qft ftω ω+ += .                    (8.26b)

Also, the work function, given by (8.22), becomes

( ) ( ) ( ) ( )2 21  p p  
2

ft ftW t U t dω ω ω
∞

− +
−∞

 = + +  π ∫ ,   (8.27)

singularities only in Ω− and its inverse Fourier transform 
is thus non-zero only on − . This latter quantity is the 
negative of the optimal continuation, yielding the mini-
mum free energy, which is discussed for the general tensor 
case in [1]. It can be shown that both the constraint (8.9) 
and the minimization of 

2
Et

RF  result in the same rela-
tion, namely (8.16) for f = 1.

For f = N, all the zeros of ( )fH ω−  are in Ω+, which gives 
that ( )Et

f ω  has singularities only in Ω+. Therefore, its in-
verse Fourier transform is non-zero only on +  and is 
the optimal history yielding the maximum free energy. In 
this case, the quantity 2

Et
RF

 to be minimized is the work 
function and (8.9) is the condition that the optimum his-
tory and the given history are in the same minimal state.

For intermediate cases, ( )Et
f ω  is non-zero on   and 

minimizes 2
Et

RF
, subject to the constraints (8.9), for var-

ious factorizations. These constraints are transitional be-
tween the two extremes discussed above.

We will see that all of these cases result in free energies 
that are on the boundary of Φ(t), defined by remark VII.3. 
This property is apparent for the minimum and maximum 
free energies. For these and all intermediate cases, we will 
see that the corresponding rates of dissipation are posi-
tive semi-definite rather than positive definite quadratic 
forms. They are zero for certain non-zero histories so that 
small variations in their kernels may lead to negative rates 
of dissipation, for these histories, in contradiction to the 
second law, as given by (3.1).

Thus, the fundamental physical content of the con-
strained optimizations is that they lead to free energies on 
the boundary of Φ(t).

The free energy (8.10) has the form

( ) ( ) ( )
2

0
1  q

2
ft

f t t dψ φ ω ω
∞

−
−∞

= +
π ∫              (8.17a)

( ) ( ) ( ) ( )0
1 E .H E

2
t t
f ft dφ ω ω ω ω

∞

−∞

= +
π ∫ ,    (8.17b)

by virtue of (8.13) and (8.15). We have the following 
relations ([1,10,13,14] for example)

( ) ( ) ( )q   q Kft ft
f

d i t
dt

ω ω ω+ += − − ,                 (8.18a)

( ) ( ) ( ) ( ) ( )q   q K H Eft ft f
f

d i t t
dt

ω ω ω ω− − −= − − + , (8.18b)

( ) ( ) ( )1K   H E
2

f t
f rt dω ω ω

∞

− +
−∞

=
π ∫                   (8.18c)

( ) ( )H1 E
2

f
t d

i
ω

ω ω
ω

∞
−

+
−∞

= −
π ∫  .                 (8.18d)

and
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( ) ( )
2

1 
2

ftS t q dω ω
π

∞

−
−∞

= − + ∫                  (8.35b)

( ) ( )
2

1 
2

ft
e t P dω ω

π

∞

−
−∞

= + ∫F ,                  (8.35c)

where

( ) ( ) ( ) ( )0  D .ES t t t tφ= − ,                   (8.36)

and Fe(t) is given by (4.1c). It is easy to show that Ff(t) 
obeys the Graffi conditions listed in subsection III A. 
Property P2 is immediately apparent. The relation (4.12) 
holds by virtue of (8.17), (8.22) and (8.23). The time de-
rivative of (4.12) yields (3.1) with Df(t) given by (8.24), 
which is equivalent to P3. Property P1 can be proved 
with the aid of (8.35b), by showing that

( )
( ) ( )  D

E
S t

t
t

∂
=

∂
.                     (8.37)

Remark VIII.3. It was shown in [14] (see also [2], 
page 340) that ( )ftq ω− , defined by (8.4), is a function of 
the minimal state in the sense defined after (4.21). This 
result transfers to the present context without alteration. 
From (8.17), we deduce that ψf(t) is a function of the min-
imal state as defined by (4.22).

For the minimum free energy ψm(t), we denote ψint(t), 
introduced in (4.18), as ψrec(t), given by

( ) ( )
2

1  
2

t
rec t q dψ ω ω

π

∞

−
−∞

= ∫ ,                   (8.38)

where ( )qt ω−  is defined by (8.4) for f = 1. This is the 
recoverable energy defined in [3]. The quantity ( )m tD
, given by (8.23) for f = 1, is that referred to as the ir-
recoverable energy in [3]. Corresponding quantities 

( ) ( )0f t tψ φ−  and ( )f tD , for each f, may be similarly 
labeled.

The optimal history/continuation, given by the in-
verse transform of (8.1), can be shown to have a discon-
tinuity at the origin which is infinite if Hsr = 0, while at t 
= ±∞, it is non-zero ([1,2], page 354).

A Detailed Dielectric Model
We have

( ) ( ) ( ) ( )( ) 
2

 0  sH
i

χ χ χωω ω ω ω ω+ += − − ≥= , ω ∈ ,  (9.1)

by virtue of (5.11). As in [3-5], we take the suscepti-
bility to be modeled by a sum of Lorentz oscillatorse

( )
2

2 2
1

  
N

n pn

n n n

f
i

ω
ω

ω ω
χ

γ ω+
=

=
− −∑ ,        (9.2)

in terms of the oscillator strength fn, the plasma fre-
quency ωpn, the resonant frequency ωn and the damping 

while (8.17b) and (8.23) are given by

( ) ( ) ( ) 21  p
2

ft
f t U t dψ ω ω

∞

−
−∞

= +
π ∫ ,               (8.28a)

( ) ( ) 21  p
2

ft
fD t dω ω

∞

+
−∞

=
π ∫ .                  (8.28b)

Equation (8.24) is unchanged.

We now briefly present double integral forms of ψf(t), 
Df(t) and D(t), which are analogous to (though simpler 
than) the corresponding formulae in [1] for the mini-
mum free energy in the full tensor case. Using (8.17b) 
and (8.28a), we can write ψf(t) in the forms

( ) ( ) ( ) ( ) ( )1 2 2
0 1 22

1 2

. ,
  

4

t t
f

f

E M Eit t d d
ω ω ω ω

ψ φ ω ω
π ω ω

∞ ∞
+ +

+ −
−∞ −∞

= +
−∫ ∫  (8.29a)

( ) ( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
 

4

t t
r f rE M EiU t d d

ω ω ω ω
ω ω

π ω ω

∞ ∞
+ +

+ −
−∞ −∞

= +
−∫ ∫  (8.29b)

( ) ( ) ( )1 2 1 2,   f f
fM H Hω ω ω ω+ −= ,                  (8.29c)

Also, Df(t), given by (8.24), can be expressed as

( ) ( ) ( ) ( )1 1 2 2 1 22  . ,
4

t t
f r f r

iD t E M E d dω ω ω ω ω ω
π

∞ ∞

+ +
−∞ −∞

= ∫ ∫   (8.30)

From (8.23) and (8.28b), we deduce that

( ) ( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
  

4

t t
f

f

E M EiD t d d
ω ω ω ω

ω ω
π ω ω

∞ ∞
+ +

− +
−∞ −∞

=
−∫ ∫

( ) ( ) ( )1 1 2 2
1 22

1 2

. ,
 

4

t t
r f rE M Ei d d

ω ω ω ω
ω ω

π ω ω

∞ ∞
+ +

− +
−∞ −∞

= −
−∫ ∫ . (8.31)

One finds that

( ) ( ) ( )1 1 2 2
1 2

1 2

. ,
  0

t t
fE M E

d d
ω ω ω ω

ω ω
ω ω

∞ ∞
+ +

+ −
−∞ −∞

=
−∫ ∫   (8.32)

by integrating over ω2 for example and closing the 
contour on Ω−, since ( )fH ω+  and ( )fE ω+  have no 
singularity in the lower half plane. This allows us to write 
(8.29a) in the explicitly convergent form

( ) ( )
( ) ( ) ( ) ( )1 1 2 2 1 2

0 1 22
1 2

. , ,
  

4

t t
f f

f

E M M Eit t d d
ω ω ω ω ω ω

ψ φ ω ω
π ω ω

∞ ∞
+ +

−∞ −∞

 − = +
−∫ ∫ . (8.33)

The fact that the integral term is non-negative implies 
that [1]

( ) ( ) ( ) ( ) ( )  0,f f f f fi H H H Hω ω ω ω ω+ − + −
 ′ ′   = − ≥     



 

ω ∈ .                      (8.34)

By invoking (5.17), we see that the quantity ( )t
rE ω+  

may be replaced by ( )tiE ω
ω+

  in the above double inte-
gral expressions.

The free enthalpy Ff(t) corresponding to ψf(t) may be 
deduced from (3.4) to be

( ) ( ) ( ) ( )  .Ef ft t D t tψ= −F                    (8.35a)
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zeros may also coalesce. Indeed, we cannot exclude the 
possibility that some of the zeros in (9.8) have a power 
higher than unity, even if all the singularities are simple 
poles. For simplicity, it is assumed that this does not hap-
pen for our choice of parameters.

Let us define for l = 1, 2, . . ., 2N −2,

2

2
2

11 ,  odd,  odd
2  ,    

,  even ,  even

l
l

l
l l

l
l

ll

l l

ηζ
η

α β
ζ η

 + +    ′   = =   
′   ′   

,                 (9.10)

and

2 1  NNα ζ− = , 2  NNα ζ ′= . (9.11)

We can write (9.5) as

( )
2 2

  1   1 11

    
N N

l l

l lχ
α

ω
ω αω+

= =

= = −
+−∑ ∑g g , ( )

lα +∈Ω ,         (9.12)

where (5.10) has been used and
2

2

1,   ,   odd,
2

  

,   ,   even.
2

i pi

i

i pi

i

f li l
l =

f li l

ω

ω

σ

σ

 +
− = 

 
 
 = 

g

                  

(9.13)

In this notation, (9.6) becomes

( )
2

  1
  l

N
i s

l
G s i le α

=

′ = ∑ g                     (9.14)

2

  1
 l

N
i s

l
i le α−

=

= − ∑ g .                   (9.14b)

Using (9.14b) in (4.20), we see that two electric field 
histories are in the same minimal state if and only if

( ) ( )1 1 2 1E   E ,  1, 2,..., 2t t l Nα α+ += = .     (9.15)

Thus, a minimal state is defined by the quantities 
(e1,e1,...e2N), where

( ) ( )1e   E ,    1, 2,..., 2t
l t l Nα+= = .                 (9.16)

Relation (5.3) gives 

( ) ( ) ( )e   E   E ,    1, 2,..., 2t t
l l lt l Nα α+ += = − = .  (9.17)

Formula (5.17) for 1  ω α=  yields

( ) ( ) ( )e   e El l lt i t tα= − + .      (9.18)

Equation (4.4b) can be written as

( ) ( ) ( ) ( ) ( )
2 2

0 0
  1   1

D   E e   E e
N N

l l l l
l l

t G t i t G t i t
= =

= − = +∑ ∑g g , (9.19)

with the aid of (9.14), so that

( ) ( ) ( )
2

0
  1

D   E e
N

l l
l

t G t i t
=

= − ∑ 

g .      (9.20)

If a free energy or free enthalpy is to depend only on 
the el(t), l = 1,2,...,2N, then the most general forms of 

( ),G s u  and ( )12 ,G s u  in (4.2) and (4.9) are

rate γn of each oscillator. All of these are positive param-
eters. It is assumed that

2
2

4
n

nω γ
> .                        (9.3)

The singularities of χ+(ω) are of course isolated. They 
are simple poles at

[ ]1
2n n niζ γ σ= + , [ ]1    

2 nn n niζ γ σ ζ′ = − = − ,       (9.4)

2 2  4n n nωσ γ= − n = 1, 2, …, N. 

Thus, they occur in pairs, equidistant from the posi-
tive imaginary axis, as required by (5.3). Separating the 
poles in (9.2), we can write

( )
2

  1

1 1  
N

n pn

n n n n

f
χ

σ ζ
ω

ω
ω ω ζ+

=

 
= − ′− − 

∑ .          (9.5)

In the time domain, this translates into

( ) ( )
2

  1
  n

N
n pn i s i s

n n

f
G s i e eζ ζω

σ
′

=

′ = −∑ , s +∈ ,           (9.6)

which are decaying exponentials multiplying sine 
functions [15], so that there will be oscillatory behavior 
superimposed on the exponential decay. From (9.2) and 
(9.1), we have

( )
( )

2 2

2 2
  1 2 2 2

  pn n

n n

N
n

n

f
H

ω ω

ω ω ω

γ
ω

γ= −
=

+
∑ ,                  (9.7)

which can be written as a ratio of two (factored) poly-
nomials: 

( ) ( )( )( )( )
( )( )( )( )

1
  12

  1
1  

N
l l l l l

N
l l l l l

H H
η η η η

ζ

ω ω ω ω
ω ω

ω ω ζωζ ζω

−
=

=

′ ′∏ − − − −  
 ′ ′− − −

=
∏ − 

  (9.8a)

1
1

2  
N

p
n

n nnH f ω γ
=

= ∑ , ω ∈ ,       (9.8b)

where the denominator of (9.8a) uses the notation of 
(9.4) while the numerator is factored to yield the zeros of 
H(ω); these must occur also in pairs, as in (9.4), so that 

l lη η′ = −  for each l. We have explicitly included the fact 
that H(ω) vanishes quadratically at the origin. Note that 
the smaller number of zeros reflects the fact that H(ω) 
behaves as 2ω−  for large ω.

The factorization can be carried out by inspection. 
We obtain

( ) ( )( )
( )( )

1
  1

  1
1  

N
l l l
N
l l l

H h
ω ω

ω
ω ω

η η
ζ ζ

−
=

=
− =

′∏ − −
′∏ − −

,

( ) ( ),    1,  2,  ...,  ,   1,  2,  ... -1l ll l Nζ η− −∈Ω = ∈Ω = . (9.9)

( ) ( ) ( )    H H Hω ω ω+ − −= = − ,

where 2
1 1  h H= .

The most general case of a rational function, which 
is considered in [2,11], can be obtained from (9.8) by al-
lowing singularities to coalesce. As a result of this, some 
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2

1
  1

 
N

i

i i

hω
ω α=

=
+∑ R ,     (9.28d)

where (7.3) has been used. The relationship
2

  1
  0

N

i
i =

=∑R ,                     (9.29)

must hold since ( )H ω−
 tends to 1

1hω−  at large ω. 
Therefore, we can also write (9.26b), (9.28c) and (9.28d) 
as

( )
2

1
 = 1

 = 
N

i i

i i

H h αω
ω α− ∑ -

R

( )
2 2

1 1
 = 1  = 1

 =  = 
N N

i i i i

i ii i

H h hα αω
ω α ω α+ ∑ ∑- +

R R
     (9.30)

We identify also a much larger class of factorizations 
of H(ω), determined by interchanging particular βl in 
(9.26a) with lβ  in (9.28a). These different factorizations 
are labeled by the subscript or superscript f. Thus,

( ) ( )
( )

2 2
  1

1 2
  1

  
N

lf
N

l l

f
lH h

ω
ω ω

ζ

ω α

−
=

−
=

∏ −
=

∏ −
                  (9.31a)

  1 ω α∑                    (9.31b)

2

1
  1

 
fN

i i

i i

Rh α
ω α=

=
−∑                    (9.31c)

( ) ( )1 1,   = 1, 2, ..., 2 ,   = 1, 2, ..., 2l ll N l N - 2α β− −∈Ω ∈Ω ,

( )1 ,    0  1  f f f
l l l l l

f
l orλ β βζ λ λ+ −= = ,            (9.31d)

( ) ( ) ( )
( )

2 2
  1

 1 2
  1
  

  |   
i

N
l if f

i i i N
l i l
l

f
l

i

R H hω α

α
ω α ω α

α

ζ

α

−
=

− =
=
≠

∏ −
= − =

∏ − . (9.31e)

Observe that (9.29) also holds for the fR , a property 
which has been used in writing (9.31c). There are 22N−2 
different factorizations. Referring to the discussion in 
sections VII and VIII, we note that if all the f

lλ  are equal 
to one, then ψf(t) is the minimum free energy ψm(t), while 
if all are zero, we obtain the maximum free energy ψM(t). 
All other possibilities yield functionals that are interme-
diate between these two extremes. These observations 
follow from remark VII.1. Observe that

( ) ( ) ( ) ( )
( )( )

2
2

1
,   1

     
f fN

i jf f

i j i j

R R
H H H Hω ω ω ω

ω α ω α+ −
=

= =
− −∑

( ) ( )
2

2
1

,   1

1 1 
f fN

i j

i j i j i j

R R
H ω

α α ω α ω α=

  = − − − −  
∑ .              (9.32)

Now, we have the relation

( ) ( )
( )

1  
H

d
ω

ω ω
π ω ω ω

χ
∞

+ −
−∞

′
′

′ ′
=

−∫ .                    (9.33)

which follows by applying an integration over   to 

( )
2

,   1
,   i j

N
i s i u

ij
i j

G s u C e α α−

=

= − ∑ ,                   (9.21)

( )
2

12
,   1

,   ,    i j
N

i s i u
ij ij ij i j

i j
G s u C e C Cα α α α−

=

′ ′= − =∑ , 

where C and C′  are non-negative hermitian matri-
ces. Then, (4.9) gives that

( ) ( )
2

0
,   1

1  e  . e
2

N

ij i j
i j

t t Cψ φ
=

′= + ∑

( )
2

,   1

1  . e
2

N

ij i j
i j

U t C e
=

= + ∑ 

 .                    (9.22)

Relation (4.5a) gives
2

  1
  ,    1, 2,..., 2

N

ij
i j

jC j = N
α=

= −∑
g

.                  (9.23)

Taking the complex conjugate of this relation yields
2

  1
  ,  1, 2,..., 2

N

ij
j i

iC i = N
α=

= −∑ g
.      (9.24)

Equation (3.1) is satisfied if

( )
2

,   1

1  e .e
2

N

ij i j
i j

D t
=

= Γ∑ 

 ,       (9.25)

( ) ,   , = 1, 2, ..., 2ij i j iji C i j Nα αΓ = − − .

The matrix with components Γij must also be hermi-
tian and non-negative.

Let us now consider the free energies ψf(t). We can 
put (9.9) in the form

( ) ( )
( )

2 2
  1

1 2
  1

  
N

l l
N

l l

H h
ω β

ω ω
ω α

−
=

−
=

∏ −
=

∏ −
                  (9.26a)

2

1
  1

 
N

i

i i

Rhω
ω α=

=
−∑ ,                   (9.26b)

( ) ( ),   = 1, 2, ..., 2 ,   = 1, 2, ..., 2 -2l ll N,  l Nα β− −∈Ω ∈Ω ,

where

( ) ( ) ( )
( )

2 2
  1

  1 2
  1
  

  |  = 
i

N
l i l

i i i N
l i l
l i

H hω α

α β
ω α ω α

α α

−
=

− =
=
≠

∏ −
= −

∏ −
R .  (9.27)

Also,

( )
( )
( )

2 2
  1

1 2
  1

  
N

l l

N
l l

H h
ω β

ω ω
ω α

−
=

+

=

∏ −
=

∏ −
                 (9.28a)

( )
( )

2 2
  1

1 2
  1

 
N

l l
N

l l

h
ω γ

ω
ω α

−
=

=

∏ +
= −

∏ −
                  (9.28b)

2

1
  1

 
N

i

i i

hω
ω α=

=
−∑ R

                   (9.28c)
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( ) ( ) ( )
2

1
,  = 1

1 e .e ,   = 2
2

f fN
i j

fij i j fij
i j i j

U t C t t C iH
α α

= +
−∑  

R R
. (9.42)

Comparing (9.34b) with (9.12), we see that
2 2

1 1
 = 1  = 1

 = -2  = -2
f f f fN N

i i j j i j
i

j ji j i j

iH iH
α α
α α α α− −∑ ∑
R R R R

g ,    (9.43)

where (9.29), for the f
iR , has been used. The relation 

(4.5a), which yields that ( ) ( )2 0,  = fG s G s′ , where the lat-
ter quantity is given by (9.14), can be confirmed with the 
aid of (9.41) and (9.43). Relation (9.23), which is equiva-
lent to (4.5a), can be confirmed for Cf.

Recall from (9.16) that the quantities e1, i = 1,2,...,2N 
represent a particular minimal state and all the ψf(t) are 
manifestly FMSs.

From (8.18d), (8.21), (9.31b), and (9.31c), we have

( ) ( ) ( )
2 2

1 1
  1   1

K  = - e  = e
N N

f f
f i i i i i

i i
t ih t h tα

= =

   
      
∑ ∑ R R , (9.44)

so that

( ) ( ) ( )
2 22 2

1 1
  1   1

 = e  = e
N N

f f
f i i i i i

i i
D t H t H tα

= =
∑ ∑ R R  (9.45a)

( ) ( )
2

1
,   1

 e .e
N

f
i i j

i i
H t t

=

= ∑  R     (9.45b)

( ) ( )
2

1
,   1

 e .e
N

f f
i j i j i j

i i
H t tα α

=

= ∑ R R .                     (9.45c)

This is in agreement with (9.25). Relations (9.38) and 
(9.45) can be derived also from (8.29) and (8.30).

Note that Df(t) vanishes if

( )
2

  1
e  = 0

N
f

i i i
i

tα
=
∑ R .                     (9.46)

Solutions to this equation will exist for non-zero val-
ues of ei(t). Therefore, (9.45b) is a positive semi-definite 
rather than a positive definite quadratic form, so that the 
associated matrix will have some zero eigenvalues. If one 
of these zero eigenvalues were to become slightly nega-
tive, then the second law would no longer hold. Thus, the 
free energy ψf(t) is on the boundary of Φ(t), defined in 
remark VII.3. This observation is of course a special case 
of that after (8.24), and relates to remark VIII.1.

A. Sinusoidal histories for non-magnetic materials

Let us consider the formulae (9.44) and (9.38) for his-
tories

( ) ( ) ( )0 0E  = A A ,  si t s i t st s e eω ω− − − ++ ∈             (9.47)

and

( ) ( ) ( )
0 0

0 0

E  = A A
i t i t

t e e
i i

ω ω

ω
ω ω ω ω

−

+ +
+ +

.              (9.48)

giving that el(t), defined by (9.16), has the form

(9.1) and completing the contour over Ω(−). The integral 
over ( )ω+χ  vanishes. Thus, we have, on integrating over 
Ω+,

( )
2

1

,   1

1 1 = 
N

i j

f f
i j

i j i j

H dωω ω
ω ω α α ω α ω α

∞

+ −
=−∞

′
′

′ ′ ′π

  χ − − − − − 
∑∫

R R
  (9.34a)

( )( )
2

,   1
 -2

f f
i i j

i j

N

i i
ii j

H
α

α α ω α= − −
= ∑

R R

.                    (9.34b)

The quantity ( )q ft ω− , defined by (8.4), may be evalu-
ated by closing the contour on Ω(−), giving

( ) ( ) ( ) ( )2

1
1

E e1q  =  = 
2

f t fN
i i ift

i i

H
d h

i
ω ω α ω

ω ω
π ω ω ω α

∞
− +

+ +
=−∞

′ ′
′

′ − −∑∫
R . (9.35)

From (8.4a), we have

( ) ( ) ( ) ( )q  = q Eft ft f tHω ω ω ω+ − − +−

( ) ( )2

1
  1

E E
 

t tN
i if

i
i i

h
α α ω ω

ω α
+ +

=

 − =
−∑R ,                   (9.36)

which has singularities at those of ( )Et ω+
 in Ω(+) but 

none in Ω(−). These explicit relations allow analytic con-
tinuation of ( )qt ω±  to the whole complex plane, ex-
cluding singular points. From (8.26a), (9.18), (9.31) and 
(9.35), we see that the quantity ( )P ft ω−  is given by

( ) ( ) ( ) ( )2
r

1
  1

E e1P  =  = 
2

f t fN
i ift

i i

H t
d ih

i
ω ω

ω ω
π ω ω ω α

∞
− +

− +
=−∞

′ ′
′

′ − −∑∫
R . (9.37)

The optimal history/continuation in the frequency 
domain, which is a special case of (8.16), is given by for-
mulae which are generalizations of those in [2], page 366. 
We deduce from (8.17b) and (9.35) that

( ) ( ) ( ) ( )
2

0 1
,  = 1

 = e .e
f fN

i j i j
f i j

i j i j

t t iH t t
α α

ψ φ
α α

+
−∑
R R

  (9.38a)

( ) ( ) ( ) ( )0 1 12 1 2 2 1 2
0 0

1 E . , E
2

t f tt s G s s s ds dsφ
∞ ∞

= − ∫ ∫ ,   (9.38b)

Where

( ) 1 2
2

12 1 2 1
,  = 1

,  = -2 i j

f fN
i s i si j i jf

i j i j

G s s iH e α αα α
α α

−

−∑
R R

.  (9.39)

Also, from (8.28a) and (9.37),

( ) ( ) ( ) ( )
2

1
,  = 1

 = e .e
f fN

i j
f i j

i j i j

t U t iH t tψ
α α

+
−∑  

R R
,  (9.40a)

( ) ( ) ( ) ( )1 1 2 2 1 2
0 0

1 E . , E
2

t f tU t s G s s s ds ds
∞ ∞

= − ∫ ∫   , (9.40b)

Where

( ) 1 2
2

1 2 1
,  = 1

,  = -2 i j

f fN
i s i si jf

i j i j

G s s iH e α α

α α
−

−∑

R R
.        (9.41)

We write (9.38a) and (9.40a) in the form (9.22), giv-
ing

( ) ( ) ( ) ( )
2

0
,  = 1

1 = e .e
2

N

f fij i j
i j

t t C t tψ φ + ∑ ,
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so that

( ) ( )
2

1
0 0

,  = 10

 = 
2

f fN
i j

c
i j i j

iHd X
d

ω ω
ω α α

   −∑
R R

.      (9.58)

( ) ( ) ( ) ( )
2 22 2

2 2 2 2
0 00 0

j ji i

i ij j

α αα α
ω α ω αω α ω α

  + + + 
− ++ −  

. 

Also, using (9.30), we see that the quantity ∆f(ω0), de-
fined by (8.34), is given by

( )
( ) ( ) ( )( )

2

0 1 2 2
,  = 1 0 0 0 0

1 1 = -
N

f f f
i j i j

i j i j i j

iHω α α
ω α ω α ω α ω α

  ∆ − 
− − − −  

∑ R R

( )
2

1
,  = 1 0 0 0 0 00

1 1 1 1 1 1 -
f fN

i j i j

i j i j i i j jj

iH
α α

α α ω α ω α ω α ω α ω αω α

     = − − −       − − − − − −−     
∑

R R . (9.59)

Now, by virtue of (9.29), for the f
iR , it follows that

2 2

 =1  =1
 =  

f fN N
j j i j

j ji j i j

α α
α α α α− −∑ ∑

R R
,

2 2

 =1  =1
 =  

f fN N
i j j j

i ji j i j

α α
α α α α− −∑ ∑

R R
. (9.60)

We deduce the relation

( )
( ) ( ) ( )( )( )

222 2

0 1 2 2
,  = 1 ,  = 1 0 00 0

 = - 2
f f f fN N

i j j i j i jf i

i j i ji j i j i ji j

iH
α α ααω

α α α α ω α ω αω α ω α

    ∆ + −  − − − −− −   
∑ ∑

R R R R ,  (9.61)

Using the symmetry of ∆f(ω0) with respect to ω0, we 
find that

( ) ( )0 0 0 = -f
c

d X
d

ω ω ω
ω

∆   

( )( ) ( )( )
2

1
,  = 1 0 0 0 0

1 1f fN
i j i j

i j i j i j i j

iH
α α

α α ω α ω α ω α ω α

  + + − − − + +  
∑

R R
,  (9.62)

and therefore

( )
( )( ) ( )( )

2

2 0 1
,  = 1 0 0 0 0

1 1 =  
f fN

i j i jf

i j i j i j i j

B iH
α α

ω
α α ω α ω α ω α ω α

  + − − − + +  
∑

R R
, (9.63)

which agrees with the constant term (proportional to 
|A|2) in (9.50).

Summary
The main results are listed below.

1. An isothermal theory of free energies, based on 
continuum thermodynamics and corresponding to lin-
ear constitutive relations with memory, is presented for 
isotropic non-magnetic materials. For a standard choice 
of relaxation function, the minimum and maximum free 
energies are given explicitly.

2. The central new result of this work is the determina-
tion of a family of intermediate free energy functionals, 
for the same relaxation function. These are analogous, 
though not identical, to those known within a mechanics 
framework. However, the assumed singularity structure 
of the frequency domain version of the relaxation func-
tion (the susceptibility, for dielectrics) is more relevant, 

( ) ( ) ( )
0 0

0 0

 = A A
i t i t

l
l l

e ee t
i i

ω ω

ω α ω α

−

+
+ +

.           (9.49)

The relation (9.38a) becomes

( ) ( )
( )( ) ( )( )

( )( ) ( )( )

0
02 2

2 0 0 0 0

0 1
,  = 1

0 0 0 0

A.A A.A

 = 
A.A A.A

i ti t

f fN i j i ji j i j
f

i j i j

i j i j

e e

t t iH

ωω

ω α ω α ω α ω αα α
ψ φ

α α

ω α ω α ω α ω α

− 
− − 

+ + + + 
+  

−  + + + + + + 

∑
R R  (9.50)

Also, from (9.44), Kf(t), which determines the rate of 
dissipation, has the form

( ) ( ) ( )

0
02

1
  1 0 0

K  = - A A
i ti tN

f
f i i

i i i

e et h
ωω

α
α ω α ω

−

=

  + + −  
∑ R . (9.51)

Remark IX.1. General formulae for the minimum free 
energy and the associated rate of dissipation were given 
for sinusoidal histories in [1]. These generalize immedi-
ately to apply to ψf(t) and Df(t) by simply replacing H±(ω) 
(or the tensor version of these quantities used in [1]) with 

( )fH ω± .

Thus, the formulae for ψf(t) and Kf(t) are as follows

( ) ( ) ( ) ( ) ( )0 0
22 2

10 1 0 0 2 0 = A.A++ A.A A
fi t i tf f

f t t B e B e Bω ωψ φ ω ω ω−+ + ,

( ) ( ) ( ) 2

1 0 0 0
0

1 = X
2

f fiB Hω ω ω
ω+ −

 
′  + −  

 
,  (9.52)

( ) ( ) ( )2 0 0 0 0
0

 = Xf f
c

dB
d

ω ω ω ω
ω

+ ∆   , 

( ) ( ) 2
 = Kf fD t t

, ( ) ( ) ( )0 0
0 0K  = A Ai t i tf f

f t H e H eω ωω ω −
+ −+

where ∆f(ω) is given by (8.34). It will now be shown 
that relations (9.50) and (9.51) can also be obtained from 
these, but after somewhat difficult manipulations. We 
see from (9.26), (9.28) and remark IX.1 that

( ) ( ) ( ) ( )( )
22 2

0 0 0 1 0
,  = 1 0 0

 =  = 
f fN

i jf f f

i j i j

H H H Hω ω ω ω
ω α ω α

− + −   − −
∑

R R . (9.53)

Referring to (9.34), we have

( ) ( ) ( )( )
2

0 0 1
,  = 1 0

X  = X  = 2
f fN

j i j

i j i j j

iH
α

ω ω
α α ω α

+ +−
− −

∑
R R ,     (9.54)

so that

( ) ( )
2

0 1
,  = 1 0 0

X  = -
f fN

i j ji

i j i ji j

iH
ααω

ω α ω αα α+

  − − −−   
∑

R R
          (9.55a)

( )
( )( )( )

2 0
1

,  = 1 0 0

2
 -

f fN i j i j i j

i j i j i i

iH
α α ω α α

α α ω α ω α

 − + =
− − +∑

R R
,              (9.55b)

We obtain

( ) ( ) ( )( )( )
22

0 0 1
,  = 10 0 0

1 X  = -
2

f fN
i j i jf

i j i j i j

i H iH
α α

ω ω
ω α α ω α ω α+ −

 
 +   − − + 

∑
R R , (9.56)

which agrees with the coefficient of 02A.A i te ω  in (9.50). 
From (9.55a), we see that

( ) ( ) ( ) ( )
222

0 0 1 2 2
,  = 10 0 0

 = 
f fN

i j ji

i j i j i j

d X iH
d

ααω ω
ω α α ω α ω α

+

  +     − − +  
∑

R R
  (9.57)
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in a physical sense, to dielectrics than to mechanics, as 
discussed in footnote 5, and this singularity structure is 
the basis of the new results.

3. An important aspect of these developments, from 
a physical point of view, is that all of these quantities are 
solutions of a constrained minimization problem, lead-
ing to free energy functionals that are on the boundary of 
the set of all free energies. Going outside of this bound-
ary would yield functionals that do not obey properties 
imposed by the laws of thermodynamics.
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