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The part itself would be seen not as a “part” of some
earlier figure but as a self-sufficient whole in its own right
Friedrich Wulf [1]. We do not yet understand how the
vertebrate visual system provides for recognition of ob-
jects. Countless experiments have been performed to
examine the contribution of cues such as color, texture,
and shadowing, but the most important cues are the con-
tours of the outer boundary. Most objects that we can
name can be identified as a silhouette, or equally well as
a line drawing of the boundary. This has long been ap-
preciated, so it is somewhat surprising that after more
than a century of experimental research, we have not yet
established how our visual system encodes this shape in-
formation.

Many might object to the last statement, for there is
an abundance of research on how the visual system of
higher vertebrate’s registers lines and edges and count-
less discussions of how neurons could combine those re-
sponses for purposes of shape recognition. The prevail-
ing views are so well known that no more than a brief
reprise is needed before giving the reasons why they do
not provide a satisfactory explanation.

Most theories pivot on the neurophysiological results
reported by Hubel & Wiesel [2,3] and related assertions
by Marr [4] in the field of machine vision. Both camps
focused on the contours that are present in an object,
and especially on the outer boundary. Hubel & Wiesel
discovered that neurons in primary visual cortex (V1)
selectively register the orientation of elongated bars.
Further, these neurons showed optimal responding to
oriented stimuli shortly after birth of the animal, so the
development of orientation selectivity was not based on
learning [5]. It was assumed that the elongated receptive
field design of V1 neurons was based on anatomical con-
vergence of optic tract fibers, mapping aligned receptive
fields of retinal ganglion cells onto the orientation-se-

lective neurons of V1. This hypothesis was supported
by numerous laboratories, with especially definitive ev-
idence being from [6].

Registering the contours of an object is now generally
viewed as an elemental, i.e., essential, step toward shape
recognition. As evidence accumulated that the neurons
of inferotemporal cortex are involved in shape recogni-
tion, it was hypothesized that learning provides for ef-
fective convergence of connections from the V1 neurons
to provide inferotemporal neurons with shape selectiv-
ity. In other words, recognition of a given shape would
require training that modified the connectivity from V1
through the ventral pathway so that one or more neu-
rons in inferotemporal cortex would be activated by a
specific shape.

Numerous models, alternatively described as neural
network or connectionist models, have been developed
on the basis of this theory [7-14]. The models have vari-
ous degrees of non-specific connectivity among the layers
of model neurons as a starting point. Then training trials
are applied to move or otherwise modify the strength of
connections from one layer to the next to create selectiv-
ity of response by one or more neurons in the final layer.
The goal is to teach the network to discriminate among
various shapes, and to do so even if there are changes in
location, size, or rotation of the shape to be identified.
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Greene [15-17] has challenged these assumptions
and models. For this work, shape boundaries were dis-
played as a string of dots using a 64 x 64 array of LEDs.
The earlier experiments [15,16] examined recognition of
known shapes, which included animals, vehicles, tools,
furniture, and such. Recognition was still possible when
the number of dots in the boundary was substantially
reduced, even to the point where the span between ad-
jacent dots was greater than the longest receptive fields
of orientation-selective neurons in V1 [15]. Greene &
Hautus [17] used an inventory of unknown shapes, and
provided evidence of immediate above-chance recog-
nition for sparse-dot versions of shapes that were seen
only once. This indicates that our visual system does not
require training to encode simple 2D shapes, which is
at odds with the training requirements of connectionist
models.

Waulf [1] presented observers with simple line draw-
ings and later asked for whether the original stimulus

could be remembered and reproduced when cued by
a fractional version. He found that fractional versions
would sometimes elicit shape perceptions that were un-
like those elicited by the original stimulus. The findings
reported here have much in common with his conclu-
sions, and support the argument that orientation, length,
and curvature of contours are not “elemental” shape
cues.

The present work used the matching protocol used by
Greene & Hautus [17], which is illustrated in Figure 1.
This protocol displays unknown shapes that are designed
to have little similarity to known objects. A given shape
in the inventory consists of a string of dots that form a
single continuous loop. Shapes that serve as “targets” are
sampled at random from the inventory, and then may
be reduced in dot-density by applying an algorithm that
maximizes the spacing (as steps around the dot string)
among the sampled dots.

Target shapes were displayed at either a 4% or 32%
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Figure 1: The matching task is illustrated. Target shapes were random selections from a 480-shape inventory, and were
displayed at 4% or 32% density. A 32% density shape is illustrated here. Comparison shapes were displayed at densities that
ranged from 4% to 32% in the opposite corner of the display board. The comparison shape was the same shape as the target
on half of the trials, and a different shape for the other half.
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Figure 2: Examples of the density treatment levels for comparison shapes. Dot sizes have been adjusted in the illustration
to compensate for weak perceptibility at lower densities. This was not an issue for the actual display conditions; even sparse
patterns that were flashed in the dimly illuminated test room were quite salient.

density. Each target shape was displayed in one corner of
the board with a 10-microsecond flash of all the bound-
ary dots. After a 300-millisecond delay, a low-density
comparison shape was flashed in the opposite corner.
The comparison shape provided either a low-density
subset of the target boundary (matching) or a low-densi-
ty subset from another unknown shape (non-matching).
Density of the comparison shapes was varied across four
levels - 4, 8, 16, and 32%. Respondents saw a given tar-
get or non-matching comparison shape only once. An
example of each density level is provided in the panels
of Figure 2.

Respondents were instructed to decide whether the
comparison shape had been derived from, and thus ap-
peared similar to, the target shape. They were told to
answer “same” or “different” to register this judgment.
This was the same experimental protocol used by Greene
& Hautus [17], except that they used targets with 100%
density and here the targets themselves were shown with
low-density (sparse) subsets of boundary dots. Addition-
al details on equipment and task conditions can be found
in that report.

Eight respondents provided judgments for this task,
consisting of 160 matching trials and 160 non-matching
trials. Figure 3 shows a plot of the percent of matching
judgments that were correct. The differentials produced
by the 4% and 32% treatments were each significant at p
< 0.0001, as indicated by one-way Anovas with repeated
measures. A two-way repeated measures Anova across
both of these treatments did not find the main effects to
be significant. The interaction of target density by com-
parison density was significant at p < 0.0001.

Clearly the two levels of target density had a recip-
rocal influence on similarity judgments. For 32% target
patterns the probability of same judgments declined as
the density of comparison shapes was reduced from 32%
to 4%. For 4% targets the probability of same judgments
declined as the density of comparison shapes was in-
creased from 4% to 32%. This demonstrates that shape
similarity is not based on enumerating the number of
matching boundary markers, nor are the dots of the tar-
get pattern delivering a modicum of shape information
that is invariably boosted by an increase in density.
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Figure 3: Mean hit rates for matching judgments are plotted. Judgments on trials that used 32% targets are shown with a solid
line and those from the 4% targets are shown with a dashed line.

It seems likely, in retrospect, that our visual system
can derive relationships among the dots from a low-den-
sity target, providing what can be described as a shape
summary. A low-density sample of dots from the origi-
nal unknown shape provides a shape perception that dif-
fers from what the full boundary will generate. Adding
dots will conflict with that summary, decreasing the like-
lihood that it will be judged as a match. Dot locations are
the elemental shape cues, with their relationships pro-
viding the summary that we store in working- or long-
term memory for purposes of identification. The lesson
here is that even a stimulus having very few dots can
generate shape information that dominates perceptual
judgments. Our simplest shape concept is provided by
three dots, which is perceived as a triangle - see [18] for
additional discussion of this issue.

Note that we are making no distinction between the
concept of a shape and that of a pattern. The latter term
is commonly used in describing a small set of discrete
spatial locations that may not have specific alignments
such as those found in a contour. Nonetheless, it is likely
that the basic encoding mechanism for registering shape
boundaries is the same whether one is using discrete dots
or a continuous contour. Both provide location markers
and most of the markers in a continuous boundary deliv-
er redundant information.

It is significant that here, as in the earlier study [17],
matching judgments were made within a few seconds
after a single exposure of a given unknown shape. This
reinforces the argument that connectionist models are
not providing a valid concept for how shapes are encod-
ed because they require many hundreds or thousands of
trials to achieve shape encoding. See [17] for further dis-
cussion of that issue.

The present experiment reinforces the earlier assertion

that V1 neurons are not providing the most elemental
shape cues. For the unknown shape inventory, a 4% density
has spans between dots that are generally greater than the
length of the receptive fields of V1 neurons. Shapley’s lab
[19] examined the receptive fields of orientation-selective
neurons in V1 of Macaque, which is thought to be func-
tionally similar to primary visual cortex in humans. For 30
out of 31 neurons the length of the excitatory zone was less
than 2.5 arc®. The 4% displays provided mean separation of
3.8 arc® for both horizontal and vertical spans, and a sepa-
ration of 5.4 arc® for dot-pairs lying at 45° orientations. Sev-
enty-eight percent of the horizontal and vertical spans were
over the 2.5 arc® receptive-field length of V1 neurons.

To further examine this issue, the test trials that dis-
played both target and matching shapes at 4% density were
sorted to identify shapes wherein all dot separations were
greater than 2.5 arc®. Those shapes were identified correctly
on 91% of the trials - the same hit rate as for shapes that in-
cluded shorter separations. For the shapes having only large
dot separations, the V1 neurons would register only a sin-
gle dot, which provides no information about orientation,
length, or curvature. We conclude that the elemental cues
for shape recognition are the marked boundary locations,
from which the system derives relative distance and angle
information that defines the shape or pattern. It is mislead-
ing to view orientation, length, and curvature as elemental.
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