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Introduction
Kratom or Mitragyna speciosa (Korth.), is a municipal 

Malaysian plant [1]. Kratom is also known as biak-biak, 
ketum, or Maeng Da by local folks of various places in Asia. 
The word kratom refers to the tree itself and also extracts 
and treatments produced from the plant [2]. The leaves of 
the tree that are exploited for its pharmacological actions 
may contain a variety of colored veins (white, green, or red) 
that are not noticeable in its natural habitat, however, these 
colors have been connected to a variety of effects when sold 
in Western nations as powdered leaf extracts [3]. The red vein 
leaf is popular in Thailand due to its potency [4]. The use of 
Kratom in Southeast Asia has been documented back for at 
least 150 years and was described for its stimulant effect in 
hard day labors, the fresh leaves are chewed for its analgesic 
and relaxing effect when brewed into tea [3]. Folk medicine 
in Southeast Asia has long recognized the effectiveness of the 
kratom herb [5]. As an "herbal tea," Kratom is often used in 
the searing heat of the tropics to help workers stay alert and 
productive, as well as to battle weariness and wean morphine 
addicts off of their drug of choice [6]. Kratom was once widely 
used in Malaysia and Thailand as an opium replacement and 
countermeasure [7]. Antispasmodic, muscle-relaxant, and 
antidiarrheal properties of Kratom are still in use in Southeast 
Asia, while its stimulant and analgesic effects are also popular 
home remedies [4,8]. Although the Poisons Act of 1952 makes 
it illegal to consume Kratom in Malaysia, the native tree and 
tea decoctions are abundantly available, therefore kratom 
is nevertheless commonly used [9]. Kratom was legalized in 
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Thailand in 2018 for therapeutic uses after a prohibition on 
its usage, manufacture, and possession was overturned [10].

Apart from Thailand and Malaysia, Bhutan, Finland, 
Lithuania, Denmark, Poland, Sweden, Australia, and Myanmar 
have kratom under control or regulation [5]. Prior to 2016, 
only five states in the United States regulated kratom, and 
the DEA (US Drug Enforcement Administration) classified 
it as a drug of concern [11]. Previously, media coverage of 
kratom use was rare and mostly limited to webpages for 
selling kratom. That began to change on July 29, 2016, 
when the Centers for Disease Control and Prevention (CDC) 
released a study on the harmful effects of kratom use on 
health. CDC has documented hundreds of deaths connected 
with kratom usage [12,13]. The DEA announced its intention 
to add mitragynine and 7-hdroxymitragynine to Schedule I of 
the Controlled Substances Act. The DEA statement restated 
an often disputed allegation made by the agency in order 
to classify the chemicals as Schedule I that kratom has no 
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between drug-treated groups and controls, or drug addiction 
and withdrawal periods, or different stages of treatment, 
investigators will be able to identify potential biomarkers 
that could later aid in clinical diagnosis or treatment [33]. 
The number and type of genes/proteins expressed in 
specific brain areas can alter due to frequent drug exposure 
[34,35]. This shift in expression governs the functioning of 
individual neurons as well as the brain circuits that link them, 
and it may be responsible for the behavioral abnormalities 
associated with addiction [36]. Because drug addiction is 
a neuropsychiatric disorder of the central nervous system 
involving a large number of interacting proteins, it lends itself 
nicely to proteomics research. A growing number of proteins 
related to drug addiction are being found, which might be a 
useful tool in the scientific community [37].

Proteomics has been utilized to investigate the effects of a 
variety of illicit substances in animal models, providing a rich 
resource for further research into biochemical pathways and 
gene/protein networks [37]. Changes in energy metabolism, 
oxidative stress, protein modification, and degradation have 
been observed in rat’s brain following methamphetamine 
treatment using proteomic methods [38,39]. The use of 
neurotoxic dosages of methamphetamine (> 40 mg/kg/day) 
demonstrated differential expression of proteins involved in 
oxidative stress, mitochondrial dysfunction, cell cytoskeleton, 
and apoptosis [38,40,41]. Experimental examination of 
addictive behaviors coupled with 2D gel electrophoresis/
MS was used for better understand the molecular basis of 
an individual's sensitivity to cocaine addiction [42]. Mass 
spectrometry-based proteomics has been used to analyze 
self-administration of amphetamine [43], cocaine [44], and 
methamphetamine [45], identifying a substantial number of 
proteins that survive beyond abstinence. Proteomic analysis 
of rat hippocampus during amphetamine self-administration, 
abstinence, and relapse revealed an increased abundance of 
cytoskeletal proteins during abstinence, implying the utility 
of the technique for identifying proteins associated with 
individual vulnerability to relapse [43].

Proteomic advances now enable the simultaneous 
detection and quantification of changes in the quantity and 
modification of thousands of proteins [46]. Given that drug 
addiction is a dynamic behavioral and physiological process, 
the ability to monitor the expression and alteration of 
many proteins concurrently will provide a more thorough 
knowledge of addiction pathophysiology. By combining 
proteomics technology with animal models of d-AMPH 
intravenous self-administration (IVSA), identify the processes 
underlying the long-term behavioral alterations associated 
with the addictive process is made possible [43].

Protein profiling in cell cultures, animal, or human brain 
regions have been conducted, where a high-throughput 
technology proteomics that provides information on protein 
function and interaction on a much larger scale, appears to 
be better suited for a global picture of metabolism and cell 
signaling [47]. The results of proteomic approach were more 
objective, and they might potentially lead to the discovery of 
novel proteins involved in addiction's effects.

recognized medicinal value and a significant potential for 
misuse [14].

In the early years of 1994, The Dietary Supplement Health 
and Education Act (DSHEA) allowed for the sale of kratom in 
the United States, although the Food and Drug Administration 
(FDA) does not recognize it as a supplement [15]. As a 
result of kratom designation by the FDA as an opioid, the 
US Drug Enforcement Administration (DEA) recommended 
that 7-hydroxymitragynine and mitragynine to be put on 
Schedule I of the Controlled Substances Act [16]. Despite 
the FDA's repeated requests to criminalize kratom under the 
Control Substances Act, there is no conclusive evidence that 
kratom use has the same negative health consequences as 
conventional opioids [17].

Despite all that stated regulation on kratom use, kratom 
is still in use today. Individuals can legally acquire kratom 
derivatives as an herbal treatment in the United States from 
shops and online distributors, and consume them in a variety 
of forms, including tablets, tea drinks, and powdered [9,18]. 
In the United States, kratom is mostly used by adults in their 
middle years (31-50 years) to self-treat pain, mental problems, 
and withdrawal relapses associated with prescription opioid 
usage [19]. Although kratom has been linked to convulsions 
and epilepsy, it’s supposed safety as an herbal treatment 
obscures overuse. While kratom is extensively advertised 
as a nutritional supplement, it receives little attention for its 
potentially deadly side effects and misuse potential. As in the 
case with other natural products, information about kratom's 
safety and health effects is scarce [20]. While consumers 
believe these goods are harmless, experts have raised 
concerns about their toxicity and interaction with medicinal 
medicines [21]. Due to a lack of evidence on potential bad 
effects on users, prior attempts to categorize kratom as a 
controlled substance rather than a herbal supplement have 
met with overwhelming popular opposition [14]. Growing 
data shows that recreational usage of kratom may be 
associated with negative clinical symptoms [20,22,23].

Among traditional indigenous medicine in Southeast 
Asia, kratom has been used for the treatment of a wide 
range of ailments ranging from fever to malaria to cough 
to hypertension to diarrhea to depression to analgesia 
[11,24,25]. The pharmacological effects of kratom and its 
possible toxicity remain unclear. Kratom can have significant 
side effects [26], but it appears to be most harmful when used 
in conjunction with other drugs [25-30].

Proteomic Studies in Drugs Addiction
Proteomics is the study of all expressed proteins using 

systematic methods [31]. It has a lot of advantages over 
traditional molecular techniques when investigating proteins 
that associating with drugs used [32]. Protein profiles are the 
outcome of the interaction between environmental factors 
and an individual's genetics. Protein expression variations 
can lead to functional alterations, allowing researchers 
to understand more about the mechanisms that explain 
drug addiction's clinical phenomenology. As a result, using 
proteomic approaches to compare protein expression profiles 
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IMS detection limit, resulting in a 100% positive success rate 
for Mitragyna identification and no false positives. IMS was 
asserted as a good approach for rapidly screening kratom 
items containing mitragynine [61].

Until recently, all the kratom detection devices are based 
on the quantifying of the main alkaloid of kratom leaves, 
namely mitragynine. Although the detection of mitragynine 
to indicate kratom addiction is technically sound, this is 
because mitragynine were not fully metabolized after 
consumption and can be detected as intact molecule in the 
urine. However, the presence of mitragynine in urine may 
not indicate addiction to kratom, it would rather mean the 
person has consumed kratom, which many do for medicinal 
purposes.

Urinary Protein Biomarkers and Kratom
Proteins are key mediators and biological actors. Proteins 

influence the metabolic state and activity of cells, tissues, and 
organisms through their various functional roles as enzymes, 
cellular signaling components, neurotransmitters, cofactors, 
or structural components. Proteins have been extensively 
studied over the last century, particularly their levels of 
expression, modification, and interaction, as well as their 
dynamics involvement in cell activity. This knowledge has been 
applied to the selection of proteins as potential drug targets and 
biomarkers [62]. The US Food and Drug Administration (FDA) 
and the National Institutes of Health (NIH) Biomarker Working 
Group defined a biomarker as “a defining characteristic that 
is measured as an indicator of normal biological processes, 
pathogenic processes, or responses to an exposure or 
intervention, including therapeutic interventions. Molecular, 
histologic, radiographic, or physiologic characteristics are 
types of biomarkers. A biomarker is not an assessment of how 
an individual feels, functions, or survives” [63]. Human urine 
is one of the most intriguing and valuable biofluid for clinical 
proteomics research and biomarkers. Proteomics advances 
[64] have significantly altered our understanding of urine 
proteins, resulting in the identification and quantification 
of hundreds of distinct proteins and peptides in a complex 
biological fluid [65,66]. Blood Proteomic analysis has 
drawbacks since sample collecting proteases are frequently 
triggered, resulting in a variety of proteolytic products and 
so bringing unpredictability to the sample [67]. Furthermore, 
blood includes 20 high abundance proteins that account for 
99 percent of the proteins in the sample [68]; these high 
abundance proteins obscure the presence of other less 
abundant, possibly relevant proteins. Urine is ultrafiltration of 
the blood in the body and is more stable compared to blood, 
therefore it is a more suitable biological specimen for analysis 
[69]. Urine can be processed rapidly, it can be acquired in 
huge quantities, and its collection is straightforward and non-
invasive, causing minimum stress to patients [70].

The oral intake of Kratom is the predominant trajectory of 
consumption [29], it is likely that additional kratom alkaloids, 
particularly those generated by first-pass metabolism, might 
potentially serve as biomarkers of kratom usage. Although 
speciogynine (SG) and speciociliatine (SC) have been 
identified [71-73], relatively few analytical techniques have 

Proteomic technologies received increased attention 
in neuroscience research areas such as neurotoxicology, 
neurometabolic, and the determination of the proteome 
of the individual brain areas in health and disease states 
[48,49]. Comparative brain proteome analysis is a powerful 
tool that enables the direct identification of proteins involved 
in the pathogenesis of neurodegenerative disorders such as 
schizophrenia [50]. Global analysis of proteins expressed in 
different brain regions provide useful information such as 
expression profiles of proteins in individual cells and their 
posttranslational modifications in the central nervous system 
[51,52]. Proteomic analysis of dynamic phosphorylation 
events and identification of phosphoproteins in brain tissue 
from morphine-dependent animals provides novel and 
unique markers for the diagnosis or staging of opioid abuse 
[53]. The expression of proteins in the frontal cortical regions 
from morphine-dependent rat brains were used to identify 
morphine-dependent rat brains [53]. The brain proteome 
of rats addicted to mitragynine, the main alkaloid of kratom 
was found changed in mitragynine withdrawal animal models 
[54,55].

Proteomic analysis has been extensively used to study 
the aftermath of morphine administration [56] and morphine 
dependency [8,57,58]. A decrease expression of glycolytic 
enzymes such as phosphoglycerate mutase 1, pyruvate 
kinase, and glyceraldehyde-3-phosphate dehydrogenase 
indicates that prolonged morphine therapy impairs glucose 
metabolism [59]. Apart from energy metabolism, morphine 
was shown to change proteins involved in oxidative stress, 
as evidenced by an increase in Glutathione S-transferase 
omega1 expression [59].

Qualification and Quantitation Analysis 
Methods for Kratom

Presently, there are no widely accepted analytical 
screening methodologies for kratom and its metabolites 
following administration, restricting detection to more 
advanced techniques such as liquid chromatography-
mass spectrometry and, more recently, IMS and Liquid 
chromatography/mass spectrometry were applied 
[60]. A unique approach for screening and detection of 
mitragynine and 7-hydroxymitragynine in human urine 
using high performance liquid chromatography tandem 
mass spectrometry was documented. This approach was 
said to be more selective, and it may be used in ordinary 
clinical examinations as well as forensic investigations. The 
technique has been claimed to be more efficient and selective 
than others [20]. Prior to this method, numerous methods 
for determining kratom have been investigated, including 
capillary electrophoresis, gas chromatography, mass 
spectrometry coupling, and other approaches. Nevertheless 
these past techniques was said not being employed optimally 
to designate kratom as the single constituent in the specimen, 
making the tandem mass spectrometry more selective [20]. 
A novel approach by using Ion mobility spectrometry (IMS) 
for detecting mitragynine in Kratom products was developed 
[61], this technique was able to detect 13 of the 15 samples 
contained mitragynine at concentrations greater than the 
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testing laboratories since they are flexible, easily automated, 
and offer the necessary sensitivity and specificity [91]. In 
forensic toxicology and clinical domains, immunoassay-based 
screening technologies such as ELISA are typically employed 
as the first line of screening to determine the presence of an 
abused substance in a biological specimen such as urine [92].

Conclusion
Abuse of kratom for its opioid-like effects is on the rise, 

nevertheless there is no commonly accepted method to 
detect the abuse of kratom. Proteomics approach may be 
used to investigate a useful biomarker, preferably from urine 
for diagnosis of kratom addiction.
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