Investigation of Anti-Cancer Nano Drugs’ Effects’ Trend on Human Pancreas Cancer Cells and Tissues Prevention, Diagnosis and Treatment Process under Synchrotron and X-Ray Radiations with the Passage of Time Using Mathematica

Alireza Heidari*

Faculty of Chemistry, California South University, California, USA

Image Article

In the current image article, we investigate anti-cancer Nano drugs’ effects’ trend on human pancreas cancer cells and tissues prevention, diagnosis and treatment process under synchrotron and X-Ray radiations with the passage of time using Mathematica (Figure 1) [1-90]. Furthermore, we have computationally simulated medical, medicinal, clinical, pharmaceutical and thera-

Figure 1: Different high-resolution various angles images of anti-cancer Nano drugs’ effects’ trend on human pancreas cancer cells and tissues prevention, diagnosis and treatment process under synchrotron and X-Ray radiations with the passage of time [1-90].

Copyright: © 2017 Heidari A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
peutics oncology of human pancreas cancer translational Nano drugs delivery treatment process trend under synchrotron and X-Ray radiations with the passage of time using Mathematica (Figure 2) [1-90].

It can be clearly and fortunately concluded that translational Nano drugs delivery treatment process possesses an acceptable and reasonable positive trend after a hundred days.

References
7. Alireza Heidari (2016) Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Pept-
Citation: Heidari A (2017) Investigation of Anti-Cancer Nano Drugs’ Effects’ Trend on Human Pancreas Cancer Cells and Tissues Prevention, Diagnosis and Treatment Process under Synchrotron and X-Ray Radiations with the Passage of Time Using Mathematica. Current Trends Anal Bioanal Chem 1(1):36-41


69. Alireza Heidari (2017) Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38- xAgx/xCux(SPh-tBu)24 to Au36-xAgx/xCux(SPh-tBu)24 (x = 1-12) Nanomolecules for Synthesis of Au144- xAgx/xCux[S(R)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uu)60 and (SC6H13)60] Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol 6: 3.


