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Abstract
This work presents the training of a Recurrent Neural Network (RNN) for the identification of dynamics behaviour in 
aeronautical systems. The network is used to model flap motion on the tail rotor at determined dynamics conditions. The 
study the tail rotor performance agrees with the expected outcomes. The modelling is not a straightforward task and 
the dynamics observed in the rotor display that the model could be a suitable tool for monitoring performance under 
certain conditions.
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Introduction
To develop a health monitoring system for a rotor 

is needed the relationship between blade damage and 
helicopter system behaviour. Due to the difficulty to derive 
flight test data for a damaged helicopter rotor, a simulated 
model presents the stage to study the performance of the 
damaged helicopter. Simulations of the rotor system response 
can be used by artificial-intelligence-based techniques 
such as neural networks, which could allow to learn the 
relationship between rotor faults and system behavior. After 
this, the trained neural network is able to be placed online 
on the helicopter to detect and to identify the corresponding 
damage from the rotor vibration as well as the response data 
[1].

Artificial neural networks (ANN) have a relevant role in 
engineering field, due to their processing power and processing 
speed. These networks have been employed successfully in 
the identification and control of nonlinear dynamic systems. 
Large assemblies of these simple elements are able to solve 
problems which need massive constraint satisfaction. These 
networks show the additional advantage of learning the 
optimal con- nection weights between processing elements. 
This learning process reduces the cumbersome programming 
that often accompanies complex problems [2].

Zhang, et al. [3] studied the neural networks application 
in helicopter reliability researching, due to the collecting of 
helicopter reliability data is a difficult task. By using the neural 
networks, the reliability data of helicopter are extended and 
these data distribution model can be derived, in fact, the 
reliability prediction can also be carried out accurately. As a 
consequence of this, the application of neural networks shows 

a suitable reference to helicopter reliability researching. Lee, 
et al. [4] showed the use of helicopter blades to analysis the 
sensitivity of an artificial neural network to structural fatigue. 
Different tests were done to assess the evolution and severity 
of the damage. A number of damage detection and diagnosis 
strategies were implemented. A preliminary experiment was 
performed on aluminum cantilever beams which generated a 
simpler model for implementation and proof of concept. As 
future work, it was proposed to mitigate structural damage 
and fatigue to use the detection information as part of a 
hierarchical control system. Dellomo [5] studied the feasibility 
of implementing a neural network to carry out fault detection 
on vibration measurements provided by accelerometer data. 
Some of the basic underlying physics were tackled along with 
the preprocessing required for the corresponding analysis. 
Several networks were studied for the classification and the 
detection of the gearbox faults. The performance of each 
network was presented, and the network weights were 
related back to the underlying physics of the system.

Due to artificial neural networks present a framework for 
modelling and control of nonlinear systems [6], a Recurrent 

http://crossmark.crossref.org/dialog/?doi=10.36959/422/461&domain=pdf


Citation: S Castillo-Rivera SC (2022) Helicopter Tail Rotor and the Training of a Recurrent Neural Network. J Aerosp Eng Mech 6(1):503-510

Rivera. J Aerosp Eng Mech 2022, 6(1):503-510 Open Access |  Page 504 |

and finally (c) Output layer as the outputs are provided. This 
network configuration is often called as a multilayer neural 
network. Once that the neural network has been trained, 
the knowledge is not stored in a determinate localization. It 
depends on the magnitude of the weights in the input layer 
as well as its topology. On the other hand, the generalization 
of an artificial neural network is the capacity to generate 
desired signals for different inputs that have not been 
employed during the network training, or that it can capture 
the dynamics of the system which is simulated [7].

Recurrent neural networks
The use of neural networks in dynamic systems modelling 

has increased due to its learning capability, parallel processing 
capacity and ability to approach functional relationship 
specifically the nonlinear ones. Typical neural networks are 
able to deal with only input to output mappings that are static 
and a solution to this case has been provided by using the idea 
of regressive models i.e., models based on past values of the 
system input and output. However, recurrent networks are 
neural networks with one or more feedback connections that 
are able to be of local or global nature. Feedback allows the 
recurrent networks to derive state representations, making 
them appropriate tools for different dynamic applications 
such as: nonlinear systems modelling and processing of 
temporal signals, among others. Feedforward and feedback 
(recurrent) connections between neurons are allowed in 
RNN. The recurrent network is a dynamic system with the 
activations of the neurons with feedback connections which 
are the state of the system [8].

Tail rotor: Flap motion
In the helicopter conventional configuration, the tail 

rotor is mounted on the perpendicular to the main rotor. It 
counteracts the torque and the yaw motion that the main 
rotor disc naturally produces [9-11].

On this rotor, the cone angle is the existing angle between 
the blade and the vertical axis of this rotor, and it is different 
to the flap angle. The blade angular speed can be obtained 
as a function of the blade’s increased cone angle. In order 
to implement the tail rotor blade flap motion, the blade’s 
reference flap can be defined as Fourier series [12-13].

0 1 1 cos  sinf fa a bβ ψ ψ= − −  		            (2)

Neural Network (RNN) is used to simulate the flap motion 
of the tail rotor. Some data are used for simulation studies 
that are carried out using this network. Based on the 
identification results, the advantages and limitations of the 
training is appraised. In the view of these considerations, the 
main contributions can be summarized as: (a) To present a 
simulation approach for the tail rotor of a helicopter dynamic 
model using a RNN such that can be used in future works 
for design and testing. (b) To describe and discuss the ANN 
features as a modelling tool in the helicopter field. (c) To 
describe and discuss the results obtained in a set of simulated 
conditions, in order to assess the capability of the network to 
model the complex mechanisms such as the flap motion in 
the tail rotor.

The structure of the article is as follows: Section 2 presents 
the main features of the ANN and provides a description of 
the method used in this work. Section 3 derives the dynamic 
behaviour for the flap motion using a RNN. Finally, the main 
conclusions are provided in Section 4.

Materials and Methods
Artificial neural networks are systems which information 

processing, with the capability of learning through models or 
examples. It is well known that the neural networks are made 
up by a set of interconnected processing units which are 
called neurons. The neurons process the signals submitted 
to the neural network wherein each stimulus is accumulated 
and transformed in total value using the activation function. 
The stimuli from and to a neuron are changed by the 
real value called synaptic weight and it distinguishes the 
respective connection between neurons. A typical layout for 
a generic neuron j is displayed in Figure 1, x1, x2,..., xp are the 
corresponding stimulus signals, wj1, wj2,...,wjp, are the synaptic 
weights, θj is a bias value, vj is the activation potential, oj is 
the neuron output signal, and φ  (.) is the activation function. 
Taking into account this design, the neuron output is written 
as:

1

p

j ji i
i

o j w xφ θ
=

 
= + 

 
∑ 			             (1)

Common neural networks show the following 
arrangement: (a) Input layer as the input stimulus is inserted 
to the network (b) Hidden layers internal layers of a network 

         

Figure 1: Typical neuron performance [8].
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and
2 2 2 2(cos  / cos ) f i f iβ β=Ω Ω  		                (3)

where t is the time, f f tψ =Ω , being fΩ  the blade 
angular speed obtained as a function of the blade’s cone angle 

Table 1: Tail rotor parameters [14].

Parameter Magnitude Units

Main rotor angular speed 44.4 rad/s

Tail rotor gearing 5.25
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Figure 2: The following subfigures are deriving for early stopping. a) Error of the RNN vs. Epochs with standard deviation (σ) equal to 
zero in the input data; b) Error of the RNN vs. Epochs with σ ≠  0 in the input data; c) Residual of the RNN vs. Time (s) with σ = 0 in the 
input data. The standard deviation of the obtained residual (σ resi) is 0.16; d) Residual of the RNN vs. Time (s) with σ ≠  0 in the input 
data. The standard deviation of the obtained residual (σ resi = 0.19); e) Histogram of the residual of the RNN with σ = 0 in the input data; 
f) Histogram of the residual of the RNN with σ ≠ 0 in the input data.
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expected values for the flap motion and the obtained values 
of the RNN. Figure 2d shows residual versus time (s) the input 
data with σ = 0.001. The histogram of the residual shown in 
Figure 2c is displayed in Figure 2e, the standard deviation of 
the histogram is 0.16. The corresponding histogram of the 
residual for Figure 2d is plotted in Figure 2e; in this case, the 
standard deviation of the histogram is 0.19.

Furthermore, the signals have been analysed in the 
frequency domain. Figure 3a displays the frequency spectrum 
of the flap motion response (dotted black line) and the 
standard deviation (σ) is equal to zero in the input data. The 
normalized spectrum from simulated and emulated response 
by the RNN model asserts that the network model is capable 
of capturing the system frequency contents. It is shown that 
the frequency content in the simulated response is identified 
in the RNN plotted with a dotted red line, both signal display 
a main peak of frequency around 37.1 Hz, which is the tail 
rotor frequency. Figure 3b shows the frequency spectrum of 
the flap motion response (dotted black line) and the standard 
deviation (σ = 0.001) in the input data. The normalized 
spectrum from simulated and emulated response by the 
RNN model asserts that the network model is capable of 
capturing the system frequency contents. It is displayed that 
the frequency content in the simulated response is identified 
in the RNN plotted with a dotted red line, both signal display 
a main peak of frequency around 37.1 Hz, which is the tail 
rotor frequency.

Fitting
Figure 4a and Figure 4b show the fitting for the RNN 

training with 10 hidden nodes. As can be seen the error decay 
has reached the value ≅ 1 and stabilized after 500 epochs, 
approximately. Figure 4a displays the standard deviation (σ) 
equal to zero in the input data 0 1 1( ,  , )a a and b and Figure 
4b shows the input data with σ = 0.001.

Figure 4c and Figure 4d show the fitting for the RNN 
training. Figure 4c displays the residual i.e., the difference the 
expected values for the flap motion and the obtained values 
of the RNN. Figure 4d shows residual versus time (s) the input 

(see equation (3)) and 0 1 1,  ,  a a b  are the corresponding 
Fourier coefficients. Some tail rotor parameters are indicated 
in Table 1 [14].

Results
An artificial neural network is implemented to simulate 

the tail rotor flap motion using the modelling presented in 
Section 2.

Recurrent neural network and tail rotor flap 
motion

An artificial neural network topology can be modelled, in 
this section; a RNN is implemented and trained. In order to 
derive sets of input-output pairs, it is required data for the 
training of the network. A neural network is able to identify 
the dynamic of a system. Thereby, the tail rotor flap motion 
is simulated using equation (2) and the software package R 
version 3.4.3 is used to carry out it. Zhang, et al. [15] have 
proven that randomization-based training methods are able to 
encourage the performance or efficiency of neural networks; 
between these methods, most of them use randomization 
either to change the data distributions, and/or to determine 
a part of the network configurations or parameters. Thus, 
the corresponding values of 0 1 1,  ,  a a b  are selected using 
normal distributions with means 0.078, 0.017 and -0.008, 
respectively. These data have been taken from Newman [12]. 
The standard deviations have been selected as 0.001 in the 
previous values.

Early stopping
Figure 2a and Figure 2b show the early stopping for the RNN 

training with 10 hidden nodes. As can be seen the error decay 
has reached the value ≅ 3 and stabilized after 200 epochs, 
approximately. Figure 2a displays the standard deviation (σ) 
equal to zero in the input data 0 1 1( ,  ,  )a a and b and Figure 
2b shows the input data with σ = 0.001.

Figure 2c and Figure 2d show the early stopping for the RNN 
training. Figure 2c displays the residual i.e., the difference the 

         
 

 
 (a) (b)

Figure 3: The following subfigures are deriving for early stopping. a) Frequency spectrum of the blade flap response (dotted black line) 
and RNN response (dotted red line) with σ = 0 in the input data; b) Frequency spectrum of the blade flap response (dotted black line) 
and RNN response (dotted red line) with σ ≠  0 in the input data.
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(a) (b)

Figure 4: The following subfigures are getting for fitting. a) Error of the RNN vs. Epochs with standard deviation (σ) equal to zero in the 
input data; b) Error of the RNN vs. Epochs with σ ≠ 0 in the input data; c) Residual of the RNN vs. Time (s) with σ ≠  0 in the input 
data. The standard deviation of the residual (σresi = 0.10); d) Residual of the RNN vs. Time (s) with σ ≠  0 in the input data. The standard 
deviation of the residual (σresi = 0.10); e) Histogram of the residual of the RNN with σ = 0 in the input data; f) Histogram of the residual 
of the RNN with σ ≠  0 in the input data.

         

(a) (b)

(c) (d)

(e) (f)

Figure 5: The following subfigures are obtaining for fitting. a) Frequency spectrum of the blade flap response (dotted black line) and RNN 
response (dotted red line) with σ = 0 in the input data; b) Frequency spectrum of the blade flap response (dotted black line) and RNN 
response (dotted red line) with σ ≠  0 in the input data.
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rotor frequency. Figure 5b shows the frequency spectrum of 
the flap motion response (dotted black line) and the standard 
deviation (σ = 0.001) in the input data. The normalized 
spectrum from simulated and emulated response by the 
RNN model asserts that the network model is capable of 
capturing the system frequency contents. It is displayed that 
the frequency content in the simulated response is identified 
in the RNN plotted with a dotted red line, both signal display 
a main peak of frequency around 37.1 Hz, which is the tail 
rotor frequency.

Overfitting
Figure 6a and Figure 6b show the fitting for the RNN 

training with and 20 hidden nodes. As can be seen the error 
decay has reached the value ≅ 1 and stabilized after 1500 

data with σ = 0.001. The histogram of the residual shown in 
Figure 4c is displayed in Figure 4e, the standard deviation of 
the histogram is 0.10. The corresponding histogram of the 
residual for Figure 4d is plotted in Figure 4e, in this case, the 
standard deviation of the histogram is 0.10.

Furthermore, the signals have been analyzed in the 
frequency domain. Figure 5a displays the frequency spectrum 
of the flap motion response (dotted black line) and the 
standard deviation (σ) is equal to zero in the input data. The 
normalized spectrum from simulated and emulated response 
by the RNN model asserts that the network model is capable 
of capturing the system frequency contents. It is shown that 
the frequency content in the simulated response is identified 
in the RNN plotted with a dotted red line, both signal display 
a main peak of frequency around 37.1 Hz, which is the tail 

         

(a) (b)

(c) (d)

(e) (f)

Figure 6: The following subfigures are obtained for overfitting. a) Error of the RNN vs. Epochs with standard deviation (σ) equal to zero 
in the input data; b) Error of the RNN vs. Epochs with σ ≠  0 in the input data; c) Residual of the RNN vs. Time (s) with σ = 0 in the input 
data.  The standard deviation of the residual (σresi = 0.09); d) Residual of the RNN vs. Time (s) with σ ≠  0 in the input data. The standard 
deviation of the residual (σresi = 0.09); e) Histogram of the residual of the RNN with σ = 0 in the input data.; f) Histogram of the residual 
of the RNN with σ ≠  0 in the input data.
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 (a) (b)

Figure 7: The following subfigures are getting for overfitting. a) Frequency spectrum of the blade flap response (dotted black line) and 
RNN response (dotted red line) with σ = 0 in the input data; b) Frequency spectrum of the blade flap response (dotted black line) and 
RNN response (dotted red line) with σ ≠  0 in the input data.

flap motion, which often, is difficult to get under determined 
dynamics conditions. The model has been derived to focus 
the study on the system’s own dynamics only.

In summary, the work here presented provides a method 
for the cumbersome task of representing a realistic and high-
fidelity rotorcraft tail rotor model considering the dynamics. 
Being this software tool a suitable environment for engineers 
in this field. A study for the tail rotor flap motion was done 
by using a RNN in order to open the door to the helicopter 
design as well as to establish the basis of future works.
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