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The space environment poses an increased risk of failure 
for electronic and photonic devices (see, e.g., [1-5]). This anal-
ysis is an attempt to quantify, on the probabilistic basis, the 
outcome of a FOAT [6] and to predict the never-zero proba-
bility of failure of the material or the device of interest in the 
actual operation conditions. It is suggested that the flexible 
and physically meaningful BAZ equation [7,8] that was used 
previously for a number of applications in microelectronics 
and photonics reliability problems (see, e.g., [9,10]) is used 
as the model of choice in the probabilistic design for reliabil-
ity (PDfR) [11] and FOAT efforts. The multi-parametric BAZ 
model extends the original Zhurkov model for the situations, 
when the stressor is not tensile mechanical stress, but any 
other stimulus that contributes to the degradation of the ma-
terial or the device (such as, e.g., elevated voltage, electri-
cal current, humidity, temperature, vibrations, light output, 
etc.) and, since the superposition principle does not work in 
the reliability engineering, - for the situations, when multiple 
stressors are applied. Another modification of the Zhurkov 
model is replacement of the time constant τ0 (see eq. (1) be-
low) with an expression that considers the role of time and 
the parameter that characterizes in a particular problem the 
degree of degradation. In the situation in question it is the 
leakage current [12].

BAZ equation for the mean-time-to-failure (MTTF) can 
be written for the case, when the external loading is ionizing 
radiation, as follows: 
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In this equation τ0 is the time constant, U0, eV, is the basic 
activation energy that characterizes the propensity of the 

material or the device to the action of the ionizing radiation, 
T,0 K is the absolute temperature, k = 8.61733x10-5 eV/K is 
Boltzmann’s constant, D, Gy = J/kg, is radiation and γR is 
the sensitivity factor for the case of radiation “stressor”. If 
the exponential law of reliability is used, then the following 
equation for the probability of non-failure in the case of 
radiation stressor can be obtained:
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In this double exponential probability distribution function 
it is considered that the failure rate λ is inversely proportional 
to the MTTF τ The time τ0 in this equation is an empirical 
parameter that characterizes the situation at failure, and 
its physical nature could be selected depending on the 
magnitude of the monitored quantity used as a suitable 
indication of FOAT failure. If, e.g., the level I* of the leakage 
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Here T is the testing temperature. In such a situation 
the factor γI does not affect the factor γR. Finally, after the 
sensitivity factors γI and γR are evaluated, the activation 
energy can be found as
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Let, e.g., the following data have been obtained at the first 
step of FOAT: 

1)	 After t1 = 35 h of testing at the temperature of T1 = 
60 °C = 333° K and after the total ionizing dose of D = 1.0 Gy = 
1.0 J/kg was obtained, 10% of the tested devices reached the 
critical level of the leakage current of I* = 3.5 µA and, hence, 
failed, so that the recorded probability of non-failure is P1 = 
0.9;

2)	 After t2 = 50 h of testing at the temperature of T2 = 85 
°C = 358° K and at the same radiation level, 25% of the tested 
samples failed, so that the recorded probability of non-failure 
is P2 = 0.75. 

Then the formulas (6) yield: 
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and 

the formula (5) results in the following value of the parameter 
γI:
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At the second step of FOAT one can use, without 
conducting additional testing, the following information from 
the first step: 

1)	 After t1 = 35 h of testing at the temperature of T1 = 
60 °C = 333° K and after the total ionizing dose of D = 1.0 Gy = 
1.0 J/kg was obtained, 10% of the tested devices reached the 
critical level of the leakage current of I* = 3.5 µA and, hence, 
failed, so that the recorded probability of non-failure is P1 = 
0.9; but, in addition, conduct FOAT for a different radiation 
level of, say, D2 = 2.0 Gy. Let us assume that the following 
information has been obtained: but, in addition, FOAT should 

current I is accepted as a suitable characteristic of the level 

of damage, then the time τ0 could be represented as, say, 
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where γI is the sensitivity factor for this current. 

Then the formula (2) can be written as
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There are three unknowns in this formula: two sensitivity 
factors, γI and γR, and the activation energy U0. These 
unknowns can be found using FOAT. Let us show how this 
could be done.

Testing should be conducted in two steps. At the first step 
testing should be carried out for the same level of radiation, 
but for two different temperature levels, T1 and T2. Then the 
following two experimental relationships will be obtained:
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Here P1,2 are the measured probabilities of non-failure, 
t1,2 are the corresponding times and I* is the level of the 
leakage current that is considered as an indication of the 
radiation related failure. Since the numerator U0 - γRD in the 
relationships (4) is kept the same, the factor γI can be found 
as

2
2 1

1

2

1

ln ln
exp ,

1
I

T n n
T

T
T

 − 
 γ =
 − 
 

            		           (5)
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After the sensitivity factor γI is determined, the second 
step of FOAT should be conducted at two different radiation 
levels to determine the sensitivity factor γR. The temperatures 
at these tests do not have to be the same. Considering that 
the stress-free activation energy U0 should remain the same, 
the following formula for the sensitivity factor γR can be 
obtained:
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where the notation (6) is used (the actual numbers are 
those obtained at this, second, step, and are different, of 
course, of the numbers obtained at the first step of testing). 
While the temperatures T1 and T2 do not have to be the same, 
the formula (7) could be simplified, if they are kept the same. 
Then the factor γR can be evaluated as 
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Future work should focus on experimental verification 
of the validity of the suggested model, as well as on the 
consideration of the combined action of several stressors 
that make physical sense. This could be done by applying the 
multi-parametric BAZ [9].
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be conducted for a different radiation level.

2)	 After t2 = 10 h of testing at the same temperature 
and after the total radiation dose of D2 = 2.0 Gy, 40% of the 
tested samples failed, so that the probability of non-failure is 
P2 = 0.6.

Then the second formula in (6) yields: 
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and the equation (8) results in the following γR value:
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After the sensitivity factors of the leakage current and the 
radiation are found, the activation energy can be determined 
as

4
51

0 1 1
1

8.6009 10 = -  = -8.61733 10 333 0.081249 = 
9.1836

 = 0.266178+0.081249 = 0.3474

R
nU KT ln D ln

ev

γ
γ

−
−   ×

+ × × +   
  

The expected time-to-failure (TTF) can be determined 
from (3) as follows:
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This time depends, of course, on the expected (specified) 
probability P. 

If, e.g., the specified probability of non-failure in actual 
operation conditions is, say, P = 0.999999, the outside 
temperature is T = -150 °C = 123° K and the radiation level is D 
= 1.0 Gy, then, with the obtained FOAT data we find:
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