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Abstract
Flutter suppression of a typical airfoil with uncertain pitch stiffness by feedback control of its trailing-edge surface is 
analyzed. The pitch stiffness coefficient is modeled by a quadratic function of a bounded random variable with the bounded 
probability density function, thus the airfoil system becomes a stochastic structure depending on its random parameter. 
It is found that just like its deterministic counterpart the flutter suppression of stochastic airfoil system can also be 
realized by feedback control. In analysis the feedback controlled stochastic airfoil system is first reduced into its equivalent 
deterministic system by Gegenbauer polynomial approximation. The critical flutter speed of the stochastic airfoil system 
with control can be determined by Hopf-bifurcation point of its equivalent system. Then the problem of suppressing limit 
cycle oscillation of stochastic airfoil system by feedback control can be studied numerically via the equivalent deterministic 
system. Numerical results show that the critical flutter speeds of a stochastic airfoil system can be reasonably lifted by 
properly control its trailing-edge surface. And this kind of feedback control is robust.

Keywords
Stochastic airfoil, Flutter suppression, Feedback control, Robust control, Hopf-bifurcation, Limit cycle oscillation, λ-PDF, 
Gegenbauer polynomial approximation

Nomenclature
ξη: Bounded Random Variable; pλ(ξ): Probability 

Density Function; λ: Parameter; Γ(λ): Gamma Function; 
)(ξλ

nG ; Gegenbauer Polynomials; (λ)k:  Pochhammer 
Symbol; h: Plunge Displacement; θ: Pitch Angle; t: Time; 
m: Mass about the Elastic Axis per Unit Span; Iθ: Mo-
ment of Inertia about the Elastic Axis per Unit Span; xθ: 
Non-Dimensional Distance Between Center of Gravity 
and the Elastic Axis; ch,cθ: Viscous Damping Coefficients; 
kh: Linear Plunge Stiffness; kθ(θ): Nonlinear Pitch Stiffness; 
b: Semi-Chord Length of the Airfoil; L: Aerodynamic Lift; 
M: Aerodynamic Moment; ρ: Air Density; U: Speed; 

θl
c

: Lift Coefficient per Unit Angle of Attack; 
θmc : Lift Mo-

ment per Unit Angle of Attack; 
φl

c : Lift Coefficient per 
Unit Angle of Attack of the Control Surface; 

φmc : Lift Mo-
ment per Unit Angle of Attack of the Control Surface; ab: 
Non-dimensional Distance Between the Elastic Axis and 
the Middle Point of Chord; ϕ: Angle of Attack; δ1, δ2: Con-
trol Parameters; kθ k'θ: Random Parameters.

Introduction
Aircraft wing flutter is a kind of self-excited oscilla-

tion resulting from interactions of inertia, elastic, and 
aerodynamic forces on the structure [1]. Wing flutter 
may deteriorate structural integrity and even lead to fail-
ure of wings. Thus, the prediction of flutter onset and 
the active suppression of flutter are of the utmost impor-
tance in aircraft design.

In the past few decades as a main topic of nonlinear 
aero-elasticity the studies on mechanism of flutter and 
various strategies for suppressing flutter have been paid 
on a great amount of attention. An active flutter sup-
pression strategy for a nonlinear airfoil was examined 
by Block and Strganac [2], which effectively extends the 
stable flight region. Based on a back-stepping design 
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technique, Xing and Singh suggested an adaptive con-
troller for the control of an aero-elastic system by output 
feedback [3]. An analytical and experimental study of a 
control surface with distributed piezoelectric actuators 
for active flutter suppression of a wing model was report-
ed by Chen, et al. [4], whose test results show that com-
pared with the open loop system, the close loop system 
increases its critical flutter speed by 12%. Analytical and 
experimental studies on active flutter suppression of a 
wing section by both the leading and the trailing surfaces 
were reported by Platanitis and Strganac [5], where un-
certainty in the nonlinear pitch stiffness was examined. 
A semi-active flutter suppression strategy for wing sec-
tion through trailing edge surface control was suggested 
by Sun, Wen and Hu [6] by using an actuator equipped 
with Magneto-Rheological (MR) damper. Their simula-
tion results show that the on-off control of MR damper 
can increase the critical flutter speed by 17% or so.

However, most of the above-mentioned works are 
limited to deterministic airfoil model only. In fact, some 
parameters of an airfoil system may be uncertain, for 
example the pitch stiffness. For the sake of simplifica-
tion and emphasis on the main effect of the determinis-
tic structure, these uncertainties used to be neglected in 
analysis. Yet it is more reasonable to model an uncertain 
physical parameter as a random variable with a given 
probability density function (λ-PDF for short). Thus, the 
system considered becomes a stochastic system, whose 
characteristics depend upon the random variable. And 
the dynamical behavior in a nonlinear stochastic system 
is much more complicated than in the corresponding de-
terministic system. One has to deal with the problem of 
stochastic bifurcation and even stochastic chaos.

A current mathematical tool to solve the dynamical 
problem of a stochastic system is the orthogonal polyno-
mial approximation, which is forwarded by Spanos and 
Ghanem [7], and further developed later on by Li [8]. In 
view of stochastic structures with bounded random pa-
rameters Fang, et al. first used Chebyshev polynomial ap-
proximation to solve the evolutionary random response 
problem of a stochastic system with random variables of 
an arch-like PDF [9]. Later on Gegenbauer polynomial 
approximation was suggested by Fang, et al. to solve the 
dynamical problem of stochastic systems with bounded 
random variables of λ-PDF [10-15], including the prob-
lem of stochastic bifurcation and stochastic chaos and its 
control or synchronization.

In this paper Gegenbauer polynomial approximation 
is used to analyze the active flutter suppression of an air-
foil system with bounded random parameter of λ-PDF. 
The stochastic airfoil system is first transformed into its 
equivalent deterministic system. And the critical flutter 

speed of the stochastic airfoil system with control can be 
determined by the Hopf-bifurcation point of its equiv-
alent system. Then the active suppression of limit cycle 
oscillation of the stochastic airfoil system can be studied 
through numerical simulations of the equivalent system. 
Simulation results show that the critical flutter speed of a 
stochastic airfoil system can be reasonably lifted by prop-
er control of its trailing-edge surface.

λ-PDF and Gegenbauer Polynomial Functions
The probability density functions of a broad type of 

bounded random variable ξ can be modeled by the so-
called λ-PDF, which can be expressed as follows

1
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where λ ≥ 0 is a fixed parameter, and ρλ is a normaliz-
ing constant expressed by 
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where Γ(λ) is a Gamma function. The graphs of λ-PDF 
for different values of λ can be shown as Figure 1.

One can see that when λ = 0, λ-PDF is a pitfall-like 
distribution
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When λ = 0.5, λ-PDF is a uniform distribution
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And when λ = 1, λ-PDF is an arch-like distribution 
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One can also see that any bounded random parame-
ter symmetrically defined on [-1, 1], with a mono-peak 
(or mono-valley) might be modeled approximately by ξ 
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Figure 1: Graphs of for different values of λ.
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with one of the λ-PDF’s most close to it. In addition even 
some un-symmetrically bounded random parameters 
can also be approximately modelled by certain polyno-
mial functions of ξ [15].

It is well-known that in orthogonal polynomial ap-
proximation the choice of orthogonal basis depends on 
the probability density function of the random param-
eter considered. For example, Hermite polynomials for 
Gaussian random parameter, Legendre polynomials for 
bounded uniformly distributed random parameter, and 
so on. As for random parameters with λ-PDF, Gegen-
bauer polynomials are the unique right choice for or-
thogonal basis. The first few Gegenbauer polynomials 
are as follows.
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The orthogonal relationships of Gegenbauer polyno-
mials may be expressed as 
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The first and the second order recurrent formulas for 
Gegenbauer polynomials are expressed as [15]
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Equation (7) implies a kind of weighted averaging 
property with λ-PDF as a weighting function. Owing to 
the orthogonal relationships of Gegenbauer polynomi-
als, any f(ξ) ⊂ L2, defined on [-1, 1] can be expressed as a 
series of )(ξλ

nG , namely
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It is worth noting here that Eq. (12) is valid only 
for taking the sum over infinite number of items. If in 

practice only a limited number of items are taken in this 
equation, the result is merely an approximation with a 
minimal mean square residual.

Dynamic Equation of a Stochastic Airfoil System
A nonlinear stochastic airfoil system permitting 

plunge h and pitch θ motion about the elastic axis, and 
equipped with a trailing-edge control surface is shown in 
Figure 2. The dynamical equation of the system, neglect-
ing control surface dynamics, may be described as

 = 
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where h and θ stand for system responses; an over-
head dot on h or θ denotes d/dt , and t is the time ; m 
and Iθ are mass and moment of inertia about the elastic 
axis per unit span, respectively; xθ is non-dimensional 
distance between center of gravity and the elastic axis; 
ch and cθ are viscous damping coefficients for plunge and 
pitch motion respectively; kh and kθ(θ) are linear plunge 
stiffness and nonlinear pitch stiffness respectively; b is 
the semi-chord length of the airfoil; and L and M are 
quasi-steady aerodynamic lift and moment, which can 
be approximately expressed as 
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where ρ and U represent air density and the speed of 
coming incompressible flow respectively; lc

θ
, mc

θ
 are 

coefficient of lift and moment per unit angle of attack 
of the airfoil; 

φl
c , 

φmc  are coefficient of lift and moment 
per unit angle of attack of the control surface; ab is the 
non-dimensional distance between the elastic axis and 
the middle point of chord; and ϕ is the angle of attack of 
the control surface to carry out the feedback control law.

It is well-known that for a conventional airfoil system 
the state feedback control of its trailing edge surface is an 
effective way to suppress airfoil flutter. To illustrate this 
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Figure 2: A nonlinear stochastic airfoil model.
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This is what we need the dynamic equation of a 
2-DOF nonlinear stochastic airfoil system with feedback 
control, which can be further processed by the Gegen-
bauer polynomial approximation.

Gagenbauer Polynomial Approximation for a 
Stochastic Airfoil System

Since the system (19) itself depending upon a bound-
ed random parameter ξ, the response of the system 
should be a function of both t and ξ, namely
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In Gegenbauer polynomial approximation these re-
sponses can be approximated by
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where )(ξλ
lG  represents the lth order Gegenbauer 

polynomial, and N stands for the highest order we have 
taken. When N → ∞, )()(0 ξλ

l
N
l l Gth∑ =  and )()(0 ξθ λ

l
N
l l Gt∑ =  

are exact solutions of Eq. (19), otherwise they are just ap-
proximate solutions. In practice we can choose a proper 
N to meet the required accuracy.

Substituting Eq. (21) into Eq. (19), we have

11 12 11 12 11 12
0

21 22 21 22 21 22
0

3

0 0

[ ( ) ( ) ( ) ( ) ( ) ( )] ( ) = 0

[ ( ) ( ) ( ) ( ) ( ) ( )] ( )

( ) ( ) [ ( ) ( )]  = 0

N

l l l l l l l
l
N

l l l l l l l
l

N N

l l l l
l l

m h t m t c h t c t k h t k t G

m h t m t c h t c t k h t k t G

k t G k t G

λ

λ

λ λ
θ θ

θ θ θ ξ

θ θ θ ξ

θ ξ θ ξ

=

=

= =

+ + + + +

+ + + + + +

′+ +

∑

∑

∑ ∑

  

  

  (22)

By using the recurrent formulas of Gegenbauer poly-
nomials, Eq. (9) - Eq. (10), we can eliminate the random 
variables explicitly appearing in the second equation of 
Eq. (22). Thus, the linear term )()(0 ξθ λ

θ l
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While deriving Eq. (23), it is assumed that θl(t) = 0, 
when l > N or l < 0, which is also valid in the following 
derivation.

The nonlinear term ∑ =

N
l ll Gt0

3)]()([ ξθ λ  in Eq. (22) can 
be expanded as

3
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flutter suppression strategy applies as well to a stochastic 
airfoil system, we simply use the proportional feedback 
control law, namely,

1 2 = hϕ δ θ δ− +                                                                   (16)

Where δ1, δ2are independent control parameters.

In general the coefficient of nonlinear pitch stiffness 
kθ(θ) is difficult to obtain analytically. One could only 
find its approximate expression through curve fitting 
the experimental data. Now we assume kθ(θ) may be ex-
pressed in the form 

2( ) = k k kθ θ θθ θ′+                                                                (17)

Where kθ and k'θ are to be determined yet. Since there 
is always some uncertainty in measuring and manufac-
turing, we would rather take kθ and k'θ as random pa-
rameters. Without losing generality, we assume that they 
can be modeled by a quadratic function of a bounded 
random variable ξ with a given λ-PDF, namely
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Where kθ, k'θ, σ1, σ2, σ'1, σ'2 are properly selected de-
terministic constants. For different values of these con-
stants, kθ, k'θ may have different probability distributions. 
For example, let η = kθ/kθ , σ1 = 0.2, and σ2 = 0.1, then the 
probability density function of η can be shown as Figure 3. 
One can see that pλ(η) even can be un-symmetric. Sub-
stituting equations (15) - (18) into Eq. (14), we have the 
following dynamical equation for the stochastic airfoil 
system
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Substituting Eq. (23) and Eq. (33) into Eq. (22), we 
have
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Multiplying ( )iGλ ξ , (i = 0,1,….,N) onto both sides of 
Eq. (34) in sequence, then taking expectations with re-
spect to ξ, owing to the orthogonality relationships of 
Gegenbauer polynomials, we finally obtain
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 (35)

Now Eq. (35) is a deterministic nonlinear one ob-
tained through some weighted averaging by Gegenbauer 
polynomial approximation on the stochastic airfoil sys-
tem with feedback control. We call it an equivalent de-
terministic system, which plays a significant role in the 
following analysis. Since Eq. (35) is deterministic, it can 
be solved by any available effective conventional theory 
or method, including Runge-Kutta method, MATLAB, 
MAPLE and so on. Once hi(t), θi(t)(i = 0~N) are obtained 
through Eq. (35), the approximate stochastic responses 
of the stochastic airfoil system can be readily obtained 
through Eq. (21), namely
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And the ensemble averaging responses are simply as
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For any sample random variable ξξ = , the sample 
responses of the stochastic system are as
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By Eq. (6) the product )()()( ξξξ λλλ
lji GGG  can be rewrit-

ten as

, , ,
0

1( ) ( ) ( ) = ( )
2

i j l
m

i j l i j l m
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Where λ
kia ,  can be written as ,
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λ λ λ
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in which (λ)k is the Pochhammer symbol, which stands 
for ( )  = ( 1) ( 1)k kλ λ λ λ+ + −

It is worth noting that in Eq. (26) we have 0, =λ
mna

, when m > n. By Eq. (6) the term [(ξ - 1)/2]m can be ex-
pressed as a linear combination of )(ξλ
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 ………………………………

By substituting Eq. (27) into Eq. (25), the product 
)()()( ξξξ λλλ

lji GGG  can be expressed as linear combinations 
of individual Gegenbauer polynomials, namely 
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Substituting Eq. (29) into Eq. (24), we have
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Similarly, by the recurrent formulas Eq. (9) - Eq. (10), 
the nonlinear term 3
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sumed as

 = i t
EY Y Pe ωε+                                                               (41)

where ε is an infinitesimal, and  P = P1 + iP2 is a com-
plex eigenvector with respect to the imaginary eigenval-
ue iω. Substituting Eq. (41) into Eq. (40), and expanding 
it into a Taylor series around YE, we have

 2 = ( , ) ( , ) 0( )i t i t
E Y Ei Pe F Y U F Y U Peω ωωε ε ε+ +          (42)

At the equilibrium point YE, we have
( , ) = 0EF Y U                                                  	         (43)

Substituting Eq. (43) into Eq. (42), and neglecting the 
second and higher order terms, we have 

( , )  = 0Y Ei P F Y U Pω −                                                   (44)

Then inserting P = P1 + iP2 into Eq. (44) and letting 
the imaginary and the real parts of the equation equal 
zero, we have

1 2 2 1 = 0,   = 0Y YF P P F P Pω ω+ −                                 (45)

To guarantee Eq. (45) having unique solutions 1P  and 
2P , we need the following additional restriction equa-

tions

1 2 = 0,   = 1T Tq P q P                                                          (46)

where q is a constant vector [16]. Combining Eq. (43), 
Eq. (45) and Eq. (46) into one, we have the following 
equation
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	       		        (47)

Eq. (47) can be solved by the Newtonian iterative 
method.

Numerical Results and Discussions
The effectiveness of the proposed flutter suppression 

strategy for a stochastic airfoil system can be shown 
through illustrative numerical examples. In calculation 
the deterministic data of airfoil system are taken as fol-
lows [17] 

a = -0.6, b = 0.135 m, kh = 284404 N/m, ch = 27.43 Ns/m, 

0.036c Nsθ = , 31.225 /kg mρ = , 6.28lc
θ

= , 3.358lc
ϕ

= , (0.5 )m lc a c
θ θ

= +

, 12.387m kg= , 20.065I kgmθ = , [0.0873 ( )] /x b ab bθ = − +  

The pitch stiffness coefficients Kθ, K'θ, can be obtained 
through curve-fitting of experimental data. Here we 
take Kθ = 2.82, K'θ = 1215. Figure 4 shows the variation 
of a sample kθ(θ, 0) of the stochastic stiffness coefficient 
kθ(θ, ξ) against θ, compared with test results cited from 
Ref [17]. One can see that the sample curve kθ(θ, 0) is a 
good approximation of the test data, as long as θ is small 

Critical Flutter Speed of Stochastic Airfoil System
By introducing the following state variables
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the equivalent deterministic system can be rewritten 
into a system of first order differential equations
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where
1 21 12 11 22 2 22 12 22 12 3 21 12 11 22

4 12 22 12 22 12 5 12 2 6 12 1

7 12 1 8 12 2 9 12 2 10 12

1 11

 = ( ) / ,   = ( ) / ,   = ( ) / ,
 = ( ) / ,   = / ,   = /
 = / ,   = / ,   = / ,   = /
 = (

c m c m M c m m c M k m k m M
m k m K m k M m K M m K M

m K M m K M m K M m M
m

θ θ θ

θ θ θ

κ κ κ
κ κ σ κ σ
κ σ κ σ κ σ κ
η

− − −

+ −

− 21 21 11 2 11 22 12 21 3 11 21 11 21

4 11 22 11 21 12 5 11 2 6 11 1

7 11 1 8 11 2 9 11 2 10 11

) / ,   = ( ) / ,   = ( ) /
 = ( ) / ,   = / ,   = /
 = / ,   = / ,   = / ,   = /

c m c M m c c m M m k k m M
m k m K m k M m K M m K M

m K M m K M m K M m M
θ θ θ

θ θ θ

η η
η η σ η σ
η σ η σ η σ η

− − − − −

− + − − −

− − − −

2 2 2 1 1 1 1 1

2 2 2 2 2

( , ) = { ( ) [ ( ) ( ) ]

[ ( ) ( ) ( )]}
i N i i i i i

i i i i i i

f y y K g t g t g t
g t g t g t

λ λ λ λ λ
θ

λ λ λ λ λ λ

σ α β

σ γ ρ υ
+ + + − −

+ + − −

+ +

+ + +



12 21 11 22M m m m m= −

Eq. (39) can be written in short as
4 4 = ( , ), NY F Y U Y R +∈                               	       (40)

The critical flutter speed can be determined by the 
Hopf-bifurcation point of Eq. (40), which is the transi-
tion point of equilibrium solution into self-excited oscil-
latory solution [16]. The Hopf-bifurcation point of Eq. 
(40) can be determined as follows.

Let the equilibrium solution of Eq. (40) be YE, then 
the transient solution in its neighborhood may be as-
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Then, we look into the effect of feedback control on 
suppressing flutter of the stochastic airfoil system under 
coming flow with different airspeeds U. In this case we 
take

1 2 1 20.1,  0.05,  0.1,  0.1σ σ σ σ′ ′= = = =                          (48)

and properly adjust the values of control parameters 
δ1 and δ2 while carrying out numerical simulations to ob-
serve the effect of flutter suppression by feedback con-
trol. The simulation results are shown in Figure 6, Figure 7, 
Figure 8, Figure 9 and Figure 10 respectively. In Figure 
5 one can find the critical flutter speed of the stochastic 
airfoil system without control under the condition (48) 
is Uf  = 11.61 m/s, which will be used as a reference later.

Under the condition U = 13 m/s, variations of limit 
cycle oscillation for pitch motion against δ1 and δ2 are 
shown in Figure 6. It can be seen that for δ2 = 25.0 the 
limit cycle oscillation can be suppressed at all for whatev-
er δ1 not less than zero; while for δ2 = 20.0 , 10.0 , or 0.0, 
the limit cycle oscillation can only be suppressed at all for 
δ1 > 0.24 , 0.56 , or 0.88 respectively.

Figure 7 shows the variation of the maximum angle 

enough. The other coefficients σ1, σ2, σ'1 and σ'2 in Eq. 
(18) are taken several different values for comparative 
study.

In analysis the highest order of the Gegenbauer poly-
nomial we take is N = 6, and λ = 1.5.

Now we are going to look into the influence of ran-
dom pitch stiffness on the critical flutter speed Uf of the 
stochastic airfoil without feedback control, i.e. when δ1 
= 0.0, δ2 = 0.0. In fact, we can obtain the critical flutter 
speed Uf of the stochastic airfoil without feedback con-
trol by solving equation (47). For simplicity in calcula-
tion we take σ'1 and σ'2 as fixed parameters, and let σ'1 = 
0.1 and σ'2 = 0.1; and properly adjust the values of σ1 and 
σ2. The numerical results for variation of critical flutter 
speed Uf against σ1 and σ2 are shown in Figure 5. One can 
see that as σ1 and σ2 increase, the critical flutter speed Uf 
decreases monotonously. That is to say the increase of 
σ1 and σ2 always brings about negative influence on the 
critical flutter speed of the stochastic airfoil system.
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for realizing the required angle of attack, ϕ, of the control 
surface. To remedy this shortcoming in analysis, all what 
we can do for drawing reasonable conclusions from our 
analysis is to set some threshold for the maximum angle 
of attack of the control surface, i.e. |ϕ| ≤ Ф. Thus, this re-
striction determines the upper limits of δ1 and δ2. On the 
other hand the lower limits of δ1 and δ2 can be determined 
by the condition of totally suppressing the limit cycle os-
cillation, i.e., |E[θ(t)]| ≤ ε', where ε' is a given small positive 
number. In this paper we take Ф = 15° and ε' = 0.0001, 
and determine the upper and lower limits for δ1 and δ2 in 
this way. Figure 10 shows the available domains S12, S13, S14 
and S15 for δ1 and δ2 corresponding to U = 12, 13, 14 and 
15 m/s respectively. It can be seen that S15 ⊂ S14 ⊂ S13 ⊂ S12, 
namely as the speed of coming flow increases, the available 
domain of δ1 and δ2 becomes smaller and smaller. In fact, 
when U = 15 m/s, the available domain for δ1 and δ2 be-
comes too narrow that the feedback control through trail-
ing-edge surface can hardly suppress flutter of the airfoil 
system any longer. However, if we choose δ1 = 1.1 and δ1 = 
0.3 in S14 as working point of the control law, there is still 
enough room for deviation of δ1 and δ2. And in a conser-
vative way, even if U = 14 m/s is taken as the critical flutter 
speed of the controlled airfoil system, it is 20% higher than 
that (= 11.61m/s) of the stochastic airfoil without control.

To illustrate further the function of feedback control 
on suppression of flutter, Figure 11 shows the time his-
tory of the ensemble average response with or without 
feedback control under the conditions that the speed of 
coming fluid is taken as U = 13 m/s and the initial state 
conditions are taken as follows.

(0) = [0.1,0.0,0.0,0.0,0.0,0.0,0.0],
(0) = [0.0,0.0,0.0,0.0,0.0,0.0,0.0],

(0) = [0.01,0.0,0.0,0.0,0.0,0.0,0.0],
(0) = [0.0,0.0,0.0,0.0,0.0,0.0,0.0]

h
h

θ
θ ′

′

of attack of the control surface against δ1 and δ2 under U 
= 13 m/s. It can be seen that the greater the δ1 and δ2 are, 
the larger the maximum angle of attack of the control 
surface.

Figure 8 shows the variation of limit cycle oscillation 
against δ1 under different speeds of coming flow. One 
can see that as the speed of coming flow increases, the 
minimum δ1 required for fully suppressing limit cycle 
oscillation becomes greater. For U = 13, 14 or 15 m/s, 
the minimum δ1 required is 0.88, 1.04 or 1.2 respectively.

Figure 9 shows the variation of the maximum angle 
of attack of the control surface under different speeds of 
coming flow. One can see that for a same value of δ1 the 
greater the speed of coming flow, the larger the maxi-
mum angle of attack of the control surface. For example, 
for δ1= 1.2 and U = 13, 14, or 15m/s, the maximum angle 
of attack of the control surface is 13°, 14.6° or 15.3° re-
spectively.

It is worth mentioning here that while modeling the 
airfoil system we have not neglected the dynamics of the 
control surface itself, nor have we introduced any executor 
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Figure 8: Variation of limit cycle oscillation against δ1 under 
different speeds of coming flow.
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approximation bridges the gap between the stochastic 
system and the available method for deterministic anal-
ysis, and applies effectively to a nonlinear stochastic air-
foil system with feedback control as well. Through the 
Hopf-bifurcation analysis and the numerical simulation 
results of the equivalent deterministic system, it is shown 
that the suggested active flutter suppression strategy for a 
stochastic airfoil system really works well. And the feed-
back control in this case is in robust sense.

References
1.	 Dowell EH, Edward J, Strganac TW (2003) Nonlinear Aero-

elasticity. Journal of Aircraft 40: 857-874.

2.	 Block JJ, Strganac TW (1998) Applied active control for a 
nonlinear aero-elastic structure. Journal of Guidance, Con-
trol and Dynamics 21: 838-845.

3.	 Xing WH, Singh SN (2000) Adaptive output feedback con-
trol of a nonlinear aero-elastic structure. Journal of Guid-
ance, Control and Dynamics 23: 1109-1116.

4.	 Chen WM, Guan D, Li M (2002) Flutter suppression using 
distributed piezo-electric actuator. Acta Mechanica Sinica 
34: 756-763.

5.	 Platanitis G, Strganac TW (2004) Control of a nonlinear 
wing section using leading and trailing edge surfaces. Jour-
nal of Guidance, Control and Dynamics 27: 52-58.

6.	 Sun W, Wen JS, Hu HY (2004) Semi-Active flutter suppres-
sion for wing aileron with framework system. Journal of Nan-
jing University of Aeronautics & Astronautics 36: 422-426.

At first the response of the open loop system without 
control presents a limit cycle oscillation; while after the 
feedback control with δ1 = 1.0, δ1 = 0.0  turns on at t = 6 
s, the transition of motion begins and the response of the 
close loop system soon drops down to the equilibrium 
position.

What shown in Figure 11 clearly illustrates the pro-
cess of flutter suppression for the ensemble averaging 
response of the airfoil system. It can be shown that if the 
ensemble averaging response gets suppressed, so does 
its every sample response. For example, for 0.8=ξ , δ1 
= 1.0, δ1 = 0.0, the time history of sample response of 
the open loop system and the close loop system is shown 
in Figure 12. One can see that the suppression of flutter 
for the sample response of stochastic airfoil system also 
works. In this sense, the active flutter suppression strate-
gy for stochastic airfoil system has the ensemble effect. In 
other word, the active flutter suppression strategy works 
well within the whole define domain of the random vari-
able. In this sense the suggested feedback control of sto-
chastic airfoil system is robust.

Conclusions
It may be the first time to analyze the problem of feed-

back control of a stochastic airfoil system with bound-
ed random parameters. The Gegenbauer polynomial 

         

0 5 10
-0.015

-0.010

-0.005

0.000

0.005

0.010

A            B
 E

[h
(t)

]

t/s
0 5 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
A               B

 E
[¦È

(t)
]

t/s  
                  (a) Plunge response                                                         (b) Pitch response  

Figure 11: The time history of ensemble averaging response. A: Off control. B: On control.

         

0 5 10

-0.010

-0.005

0.000

0.005

0.010

A              B

h(
t)

t/s
0 5 10

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

A             B

¦È
(t)

t/s
(a) Plunge response (b) Pitch response

Figure 12: The time history of sample response. A: Off control; B: On control.

https://arc.aiaa.org/doi/abs/10.2514/2.6876
https://arc.aiaa.org/doi/abs/10.2514/2.6876
https://arc.aiaa.org/doi/abs/10.2514/2.4346
https://arc.aiaa.org/doi/abs/10.2514/2.4346
https://arc.aiaa.org/doi/abs/10.2514/2.4346
https://arc.aiaa.org/doi/abs/10.2514/2.4662
https://arc.aiaa.org/doi/abs/10.2514/2.4662
https://arc.aiaa.org/doi/abs/10.2514/2.4662
https://arc.aiaa.org/doi/abs/10.2514/1.9284
https://arc.aiaa.org/doi/abs/10.2514/1.9284
https://arc.aiaa.org/doi/abs/10.2514/1.9284


• Page 120 •

Citation: Cunli W, Fang T (2017) Active Flutter Suppression of Stochastic Airfoil with Uncertain Pitch Stiffness. J 
Aerosp Eng Mech 1(2):111-120

Cunli and Fang. J Aerosp Eng Mech 2017, 1(2):111-120 ISSN: 2578-6350  |

7.	 Spanos PD, Ghanem RG (1989) Stochastic finite element 
expansion for random media. J Eng Mech 115: 1035-1053.

8.	 Li J (1996) The expanded order system method of combined 
random vibration analysis. Acta Mechanica Sinica 28: 66-75.

9.	 Fang T, Leng XL, Song CQ (2003) Chebyshev polynomial 
approximation for dynamical response problem of random 
system. Journal of Sound and Vibration 226: 198-206.

10.	Fang T, Leng XL, Ma XP, et al. (2004) λ-PDF and Gegengbau-
er polynomial approximation for dynamic response problems 
of random structures. Acta Mechanica Sinica 20: 292-298.

11.	Ma XP, Leng XL, Meng G, et al. (2004) Evolutionary earth-
quake response of uncertain structures with bounded random 
parameter. Probabilistic Engineering Mechanics 19: 239-246.

12.	Leng XL, Wu CL, Ma XP, et al. (2005) Bifurcation and cha-
os analysis of stochastic Duffing system under harmonic 
excitations. Nonlinear Dynamics 42: 185-198.

13.	Wu C, Lei Y, Fang T (2006) Stochastic chaos in a Duffing os-
cillator and its control. Chaos, Solitons & Fractals 27: 459-469.

14.	Wu CL, Rong HW, Fang T (2007) Chaos synchronization of 
two stochastic Duffing oscillators by feedback control. Chaos, 
Solitons & Fractals 32: 1201-1207.

15.	Wu CL, Ma XP, Fang T (2006) A complementary note on 
Gegenbauer polynomial approximation for random response 
problem of stochastic structure. Probabilistic Engineering Me-
chanics 21: 410-419.

16.	Griewank A, Reddien G (1983) The Calculation of Hopf Points 
by a Direct Method. IMA Journal of Numerical Analysis 3: 295-
303.

17.	Ko J, Strganac TW, Kurdila AJ (1998) Nonlinear adaptive 
control of an aeroelastic system via geometric methods. AIAA 
Paper 98-1795.

DOI: 10.36959/422/431 | Volume  1 | Issue 2
SCHOLARS.DIRECT

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281989%29115%3A5%281035%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281989%29115%3A5%281035%29
https://link.springer.com/article/10.1007/BF02486721
https://link.springer.com/article/10.1007/BF02486721
https://link.springer.com/article/10.1007/BF02486721
http://www.sciencedirect.com/science/article/pii/S0266892004000190
http://www.sciencedirect.com/science/article/pii/S0266892004000190
http://www.sciencedirect.com/science/article/pii/S0266892004000190
https://link.springer.com/article/10.1007/s11071-005-2553-1
https://link.springer.com/article/10.1007/s11071-005-2553-1
https://link.springer.com/article/10.1007/s11071-005-2553-1
http://www.sciencedirect.com/science/article/pii/S0960077905003358
http://www.sciencedirect.com/science/article/pii/S0960077905003358
http://www.sciencedirect.com/science/article/pii/S0960077905011483
http://www.sciencedirect.com/science/article/pii/S0960077905011483
http://www.sciencedirect.com/science/article/pii/S0960077905011483
https://academic.oup.com/imajna/article-abstract/3/3/295/665792?redirectedFrom=PDF
https://academic.oup.com/imajna/article-abstract/3/3/295/665792?redirectedFrom=PDF
https://academic.oup.com/imajna/article-abstract/3/3/295/665792?redirectedFrom=PDF
https://arc.aiaa.org/doi/10.2514/6.1998-1795
https://arc.aiaa.org/doi/10.2514/6.1998-1795
https://arc.aiaa.org/doi/10.2514/6.1998-1795

	Title
	Abstract
	Keywords
	Nomenclature
	Introduction
	λ-PDF and Gegenbauer Polynomial Functions 
	Dynamic Equation of a Stochastic Airfoil System 
	Gagenbauer Polynomial Approximation for a Stochastic Airfoil System 
	Critical Flutter Speed of Stochastic Airfoil System 
	Numerical Results and Discussions 
	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	References

