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Abstract
Tensegrity systems are mechanical structures made of struts in compression, kept in stable equilibrium by a network 
of cables in tension, they are a class of mechanical structures which are highly controllable. This paper describes the 
dynamic response and vibration control of Tensegrity systems under seismic excitation. After giving the dynamic model 
of Tensegrity system under seismic excitation, the optimal control theory Linear Quadratic Regulator (LQR) algorithm 
is introduced as a possible method to be used in designing active control. A planar Tensegrity beam comprising of two 
modules, with pretension 30 cables and 8 struts with piezoelectric actuators, is optimized. The results show that vibration 
amplitudes of members are successfully reduced by such a kind of approach.
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Introduction
Tensegrity systems are spatial, reticulated and light-

weight structures that have been known for almost half 
a century. The makeup of these structures consists of 
compressed struts and tensioned cables [1,2]. The ten-
sioned cables of the structure are self-stressed such that 
the entire system could be provided stable equilibrium 
before any external loads is added, including gravitation-
al. Due to this characteristic, systems will be composed of 
a network of cable members joined by discontinuous and 
limited compression members. A widely acknowledged 
definition has been proposed by Motro [3]. “A Tenseg-
rity is a system in stable self-equilibrated state comprising 
a discontinuous set of compressed components inside a 
continuum of tensioned components”. These smart struc-
tures have a large number of potential applications, for 
the benefit of systems which need, for instance, a small 
transportation, tunable stiffness properties, active vibra-
tion damping and deployment or configuration control. 
Because of these kinds of potential applications, since 
Tensegrity systems appeared in the early 1950s, they have 
been a matter of surprise and fascination. Until now, the 
concept of Tensegrity has been applied range from archi-
tecture, aerospace, civil engineering to biological fields.

Compared to the research related to geometry, form 
finding and architecture of Tensegrity structure, only 

few studies focused on the dynamic behavior. Motro, et 
al. [4] performed dynamic experimental and numerical 
work on a Tensegrity structure composed of 3 bars and 
9 struts. They showed that a linearized dynamic model 
around an equilibrium configuration provides a good ap-
proximation of the nonlinear behavior of simple Tenseg-
rity structure. Ben Kahla, et al. [5] proposed a numerical 
procedure for nonlinear dynamic analysis of Tensegrity 
systems. Oppenheim and Williams [6] concluded that 
friction in the rotational joints of the structure is a more 
important source of damping than the damping in ten-
dons. Oppenheim and Williams [7] examined the dy-
namic behavior of a simple elastic Tensegrity structure, 
and found that the natural damping of the Tensegrity el-
ements is poorly mobilized duo to the existence of infin-
itesimal mechanisms. Sultan, et al. [8] derived linearized 
dynamic models for two classes of Tensegrity structures 
and showed that the modal dynamic range generally in-
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creases with the pretension. Masic and Skelton [9] uti-
lized a linearized dynamic model to enhance the dynam-
ic control performance of a Tensegrity structure. Tan 
and Pellegrino [10] investigated the nonlinear vibration 
of a cable-stiffened pantographic deployable structure 
and showed that the system resonant frequencies are re-
lated to the level of active cable pretension.

Control of Tensegrity systems has been a topic of re-
search since the middle of the 1990s. As is mentioned 
above, Tensegrity structures are a class of mechanical 
structures which are highly controllable. Skelton, et al. 
[11] concluded that as only small amounts of energy are 
needed to change the shape of Tensegrity structures, they 
are advantageous for active control. Djouadi, et al. [12] 
described the active vibration control of class 2 Tenseg-
rity structure undergoing large deformations by use of 
an instantaneous optimal control scheme coupled with 
a finite element analysis based on geometric nonlinear-
ity. Sultan [13] presented a formulation of Tensegrity 
active control and illustrated it with the example of an 
aircraft motion simulator. Kanchana saratool and Wil-
liamson [14] proposed a nonlinear constrained particle 
model of a Tensegrity platform, they used this model to 
study Tensegrity feedback shape control and developed 
a path tracking algorithm using neural networks. Van de 
Wijdeven and de Jager [15] studied an example of 2D 
Tensegrity vibration and shape control. Bel Hadj Ali and 
Smith [16] described the dynamic behavior and vibra-
tion control of a full-scale active Tensegrity structure. 
All these studies obtained results mainly from numerical 
simulation of small, simple, and symmetric Tensegrity 
models. Nelson [17] investigated the vibration control 
of a Tensegrity beam under sinusoidal excitation in her 
doctoral dissertation.

On the other hand, utilization of discrete piezoelec-
tric actuators has been shown to be a viable concept for 
vibration control in various works. Crawley and de Luis 
[18] proposed an analytical solution for a static case in-
cluding various actuator geometries. They suggested that 
discrete piezoelectric actuators could be considered in 
vibration control of some modes of vibration flexible 
structures. Kalaycioglu and Misra [19] used a dynamic 
modeling technique for vibration control of plate struc-
tures by utilizing PZT patches. The technique incorpo-
rates geometrical and mechanical properties of the actua-
tor with the structures on which they mounted. Suleman 
[20] presented the effectiveness of the piezoceramic sen-
sor and actuators on the suppression of vibrations on an 
experimental wing due to gust loading. They showed the 
feasibility of application of the smart structures in the 
suppression of vibrations due to the gust loading on the 
smart wing.

Researchers have recently focused their attentions on 
seismic-response-controlled structures which are being 
accepted as a fresh concept that can respond to the needs 
of a society in the new century. Kobori [21] proposed 
the concept of seismic-response-controlled structures 
and suggested this as the future direction on research. 
Raja and Narayanan [22] discussed the vibration control 
of Tensegrity structures under stationary and non sta-
tionary random excitation using H2 and H∞ controller. 
Chen, et al. [23] described a design method for the H∞ 
state-feedback controller in finite frequency range to at-
tenuate seismic-excited building vibration.

This paper proposed an idea of utilizing discrete 
piezoelectric actuators (Figure 1) in Tensegrity systems 
in order to create structures which can adapt to maintain 
stability, serviceability and reliability requirements. The 
importance of this paper is the introduction of concept 
(seismic-response-controlled structures) to Tensegrity 
systems, meanwhile, optimal active control of Tensegri-
ty systems is considered by optimizing the structure and 
controller simultaneously. Based on the dynamic model 
of Tensegrity system under seismic excitation, the shape 
of structure is optimized with the node displacement as 
the design variable and the force generated by piezoelec-
tric actuators is also considered as that mentioned in the 
work of Raja and Narayanan [24]. Numerical example 
shows that the LQR control is suitable for the vibration 
control of Tensegrity systems under seismic excitation.

Dynamic Model under Seismic Excitation
In this section, a linearized dynamic model written 

around an equilibrium configuration will be used to de-
scribe the dynamic behavior of the active Tensegrity sys-
tem under seismic excitation. The linearized differential 
equation at a pre-stressed configuration can be written 
as:

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )b gMx t Cx t K x t Mx t F t+ + = − =              (1)

         

Figure 1: Discrete piezoelectric actuator in active strut [15].
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Here M
∧

, C
∧

 and bK
∧

 refers to the mass, damping 
and stiffness matrix, respectively, ( )F t

∧

 represents the 

seismic excitation, vector x
∧

, x
∧
  and x

∧
  represents the 

vector of nodal displacement, velocity and acceleration, 
respectively, gx

∧
  refers to the ground acceleration caused 

by earthquake.

The tangent stiffness matrix bK
∧

 is decomposed into 
the linear stiffness matrix ˆ

LAK , commonly used for 
small-deformation truss analysis, and the geometrical 
stiffness included ˆ

NLK  by self-stress [3].

b LA NLK K K
∧ ∧ ∧

= +                                                                        (2)

For the development of a finite element model of the 
Tensegrity system, each element in the structure is char-
acterized by the following mass and stiffness matrices 
[25]:

0 0

0 0

ˆ
LA

I IEAK
I IL

−  = ⋅   −                                                       
(3) 
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(4)

3 3
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I ImM
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−  = ⋅   −                                                              
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Where:  0 3

1  0  0 1  0  0
 0  0  0  ,  0  1  0

0  0   0 0  0   1
I I

   
   = =   
      

 

here, defining q = T/L as the force density coefficient for 
the member, E refers to the elastic modulus, A refers to 
the member area, L refers to the length of the member 
and T refers to the axial load. So the global mass and stiff-
ness matrices M and Kb can be obtained by adding up 
contributions from the individual elements expressed in 
a global coordinate system.

By neglecting the damping matrix and the seismic 
excitation in Equation (1), the modal analysis of the 
Tensegrity system can be conducted as follows:

[ ] ( )2 0bK M x tω− =                                                 (6)

Where ω refers to the natural frequency.

defining n as the degree of freedom of a Tensegrity 
system, the above equation gives the natural frequency 
ωr (r = 1 : n) and the modal matrix φ , modal masses as 
well as modal loading can be determined by Equation (7) 
and Equation (8):

2

1

n

r r r i ir
i

M M mφ φ φ
−

= = ∑                                              (7)

1

n
T

r r g i ir
i

F f x mφ φ
−

= = − ∑
                                            

(8)

defining yr (t)
 

as the generalized coordinates, the un-
coupled equations of motion for each mode can be for-
mulated as:

( ) ( ) ( ) ( )2 2

1 1
2 / . /

 

n n

r r r r r r r r g i ir i ir
i i

y t y t y t P M x t m mξ ω ω φ φ
− −

 + + = = −  
 
∑ ∑  

  

(9) 

here ξr refers to the damping ratio corresponding to 
the mode of r.

The maximum displacement of each mode can be 
computed as a function of the maximum of acceleration:

1
2

2

1

1

n

i ir
i

r r n
r

i ir
i

m
S S

m

φ

ω φ

−

−

=
∑

∑


                                                       

(10)

note that the maxima are not reached at the same 
time for all modes, the following equation is used to de-
termine the maximum response in the physical coordi-
nates of the Tensegrity system.

2

1

j

r
r

S S
−

= ∑
                                                                    

(11)

Where j is the number of modes used in the solution.

Optimal Active Control Theory
The governing differential equation of motion for the 

structure under seismic excitation can be formulated as:

( ) ( ) ( ) ( ) ( )b s sMx t Cx t K x t F t B u tτ+ + = + 

      (12) 

here, defining n as the degree of freedom of a Tenseg-
rity system, M, C and kb gives n×n mass, damping and 
stiffness matrices respectively, vector x , x  and x  rep-
resents the vector of displacements, velocities and accel-
erations respectively, vector F(t) represents the seismic 
excitation, Ts represents the position matrix of the seis-
mic excitation, vector u represents the actuator forces of 
the structure and the corresponding position matrix is 
represented by matrix Bs.

On the other hand, Rayleigh damping model instead 
of friction damping model is considered in this paper 
considering the linearity of structural stiffness, Rayleigh 
defined proportional damping as a dissipative situation 
where viscous damping C is directly proportional to 
mass, stiffness or both as:

][][ bcc KMC βα +=                   		         (13)

here αc and βc represents mass and stiffness materi-
al loss factors respectively, which can be determined by 
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tremal problem of functional with no subsidiary, namely:

min ( ) 0| ,       fL u t t t t≤ ≤ 		       (20)

in order to solve Equation (20), take Hamiltonian 
function as the following form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , / 2T T TH X u F t X t QX t u t Ru t t AX t Bu t F tλ λ τ= + + + +  (21)

note that

( ) ( ) ( ) ( ) ( ) ( )
0

0 0

|
f f

f

t t
tT T T
t

t t

t X t dt t X t t X t dtλ λ λ = −   ∫ ∫      (22)

hence

( ) ( ) ( ) ( ) ( )
0

0

, , , , |
f

f

t
tT T
t

t

L H X u F t t X t dt t X tλ λ λ= + −  ∫      (23)

suppose the variation of X, u, F and λ  is Xδ , uδ
, Fδ , Fδ , respectively, and the functional increment 
caused by them is XLδ , uLδ , FLδ , and Lλδ , respec-
tively. Consider only the first-order trace, the relation-
ship of the variation increments can be obtained as fol-
lows:

X u FL L L L Lλδ δ δ δ δ= + + + 		        (24)

0

0

|
f

f

t
tT T T T
t

t

H H H HL X u F X dt X
X u F

δ δ λ δ δ δλ δ
λ

 ∂ ∂ ∂ ∂    = + + + + − −    ∂ ∂ ∂ ∂    
∫   (25)

due to the randomicity of Xδ , uδ , Fδ  and δλ , 
the necessary condition for which the functional L ar-
rives the extreme value can be written as:

/ 0H Xλ + ∂ ∂ =                                                           (26)

/ 0H u∂ ∂ =                                                                   (27)

/ 0H F∂ ∂ =                                                                  (28)

/ 0H Xλ∂ ∂ − =                                                          (29)

0
| 0ftT
tX λ∂ =                                                                  (30)

manipulating these equations provides the following 
equation:

)()()( 1 tXtGBRtu T−−=                                           (31)

such that, the optimal matrix V is obtained

)(1 tGBRV T−=                                                          (32)

Where G(t) is a positive definite matrix [26], which 
can be determined by solving the Riccati differential 
equation (RDE) as follows:

( ) ( ) ( ) ( ) ( )1 0T TG t G t A A G t G t BR B G t Q−+ + − + =

      (33)

the results of Equation (33) prove that all elements 
maintain invariable from the moment of -t0 , however, 
rapidly change has been found when the time approach-
es tf

 

 namely

GtG =)( , 0)( =ftG                                    	       (34)

so Equation (33) can be substituted by the following 

solving the nature frequencies and damping ratios of the 
first and second modes of the structure system.

In order to obtain a state-space representation of the 
controlled system, the differential equation of motion 
described by Equation (12) is premultiplied with M-1 (for 
nonsingular mass matrix)

( ) ( ) ( ) ( ) ( )1 1 1 1
b s sx t M Cx t M K x t M F t M B u tτ− − − −= + = +     (14)

Furthermore, definition of the state vector X, as 
{ }  Tx x  leads to the state-space formulation of the struc-
ture dynamic model can be written as follows:

( ) ( ) ( ) ( ) ( )0 0  ,  X t AX t F t Bu t X t Xτ= + + =

     (15)

)()()( 0 tXtCtY =                                                                                            (16)

Where: 
1 1
n n

b

O I
A

M K M C− −

 
=  − − 

, 
1
n

s

O
B

M B−

 
=  

 
, 

1
n

s

O
M

τ
τ−

 
=  

 
here, defining A as the matrix of system, B and T gives 

the position matrix of actuator and environment distur-
bance, respectively, Y(t) represents the input vector, C0(t) 
represents the output matrix, On and In are the zero ma-
trix and unit matrix, respectively.

When using the LQR algorithm, the performance in-
dex is defined as follows:

( ) ( ) ( ) ( )
0

1
2

ft
T T

t

J X t QX t u t Ru t dt= + ∫
         

(17)

here defining  u(t) = VX(t)

Equation takes on the following form:

( ) ] ( )
0

1
2

ft
T T

t

J X t Q V RV X t dt= +∫
                                        

(18)

As can be seen, the performance index relates to X, 
which as mentioned is the state vector of the system. The 
Q and R matrices are the diagonal weighting matrices 
that are determined by the designer. t0 and tf and rep-
resents the time of initial and final equilibrium config-
uration, respectively. The matrix Q relates to the impor-
tance of control and R relates to the importance of pre-
serving cost, or controller force. They are specified based 
on what the designer deems to be the priority, control or 
cost. The matrix V relates to the gain which the system 
will see from the LQR controller. Base on the matrices X, 
Q and R the LQR algorithm seeks to find an optimal V 
such that the index J is minimized.

In order to solve this optimization problem, Lagrang-
ian function is taken here:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

/ 2 / 2
f ft t

T T T

t t

L X t QX t u t Ru t dt t AX t Bu t F t X t dtλ τ= + + + + −   ∫ ∫ 

  
(19)

Where λ is a vector of Lagrange multiplier.

Hence, Equation (17) could be changed into a ex-
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In this section, the planar Tensegrity beam arrange-
ment to be used was based upon the model utilized in van 
de Wijdeven’s work. The model used in this application 
comprises of two modules, with pretension 30 cables and 
8 struts, the ends of this beam are pined connected at the 
bottom and roller at the top (Figure 2).

Figure 3 depicts the force density assumptions. Mem-
bers shown in the same colors are thought to have equiv-
alent force densities. The force density method, utilizing 
these intuitive assumptions, is then used to determine 
the initial coordinates and pretension forces in each 
member. The results are shown in Table 1.

Table 1 gives the summary of the force density and 
material properties of each member, and the stiffness and 
damping matrices can be formulated by these properties.

In order to observe the dynamic response and vibra-
tion control of the system under seismic excitation, the 
El Centro 1940 earthquake data is used as the excitation 
signal (Figure 4).

To optimize the control force on this system, the lin-
ear quadratic regulator algorithm will be used here. As is 
discussed above, this requires specifying weighting ma-
trices, Q and R, which are defined as the following form:

equation:
1 0−+ − + =T TGA A G GBR B G Q                           (35)

from where the vector u can be written as:
1( ) ( )−= − Tu t R B GX t                                                (36) 

such that, Equation (15) can be described as the fol-
lowing form:

1( ) [ ] ( ) ( )τ−= − +

TX t A BR B G X t F t ; 00 )( XtX =       (37)

From the above equations the performance index J is 
obtained

( ) ( ) ( ) ( ) ( )
0

0

0 0
1 1 1| 0
2 2 2

f

f

t
tT T T T
t

t

J X QX u Ru dt X t GX t X t GX t= + = − = >∫    (38)

here, incidentally, proves  G(t) is a positive definite 
matrix.

The LQR algorithm seeks to limit the performance in-
dex of the controllers because of utilizing the state-space, 
as well as designer specified weighting matrices. This 
algorithm provides a simple procedure for determining 
optimal control although it does have a few limitations 
which will be discussed in the following sections.

Illustrative Example
Model and parameters

         

Figure 2: Model of a planar tensegrity beam.
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Figure 3: Model of force density assumptions.
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α β
α β
α β





                                                 

(40)

Here, the LQR function in MATLAB will be used to 
evaluate the optimal gain. This function, gives the A and 
B parameters of the state space and specified weighting 
matrices, Q and R, gives the optimal gain V, namely:

),,,( RQBAlqrV =                                                  (41)

actuator force is then determined by the following 

 
  

.

b n

n

n

K O
Q O M

R I

α

β

 
⋅  =  

= 

                                                          (39)

Where α and β are the coefficients for weighting ma-
trices determined by the designer.

In order to view the results of placing more weight 
on controlling the deflecting or minimizing the control 
force, three different sets of coefficients α and β will be 
considered:

Table 1: Summary of the member properties.

Element type Modulus of 
elasticity (GPa)

Length 
(mm)

Diameter 
(mm)

Area (mm2) Force density 
(KN/mm)

Initial force 
(KN)

Struts 210 2795.1 150 17662.5 -0.45 -1257.8
Vertical cables 170 1250 40 1256 0.225 281.3
Outer diagonal cables 1952.6 0.225 439.3
Outer horizontal cables 1500 0.525 787.5
Inner shorter diagonal cables 1346.3 0.225 302.9
Inner longer diagonal cables 1600.8 0.225 360.2
Inner shorter horizontal cables 500 2.025 1012.5
Inner longer horizontal cables 1000 2.025 2025
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Figure 4: Earthquake record of El Centro 1940.
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6. Here, the red, blue, green, and magenta lines repre-
sent the uncontrolled response, Q1/R1 response, Q2/R2 
response, and Q3/R3 response respectively. According to 
the definition of weighting matrices mentioned above, 
Q2/R2 the control parameters placed more weighting on 
minimizing controller output or mitigating deflections 
with respect to the Q1/R1 control parameters and Q3/R3 
control parameters, respectively.

As can be seen, the uncontrolled responses have by far 
the largest maximum displacements. Take Figure 6 as an 
example, the maximum displacement of uncontrolled re-
sponse is 569.69 mm at the time around 2.4 second, while 
the maximum displacement of controller scenario 1-3, is 
are 163.21 mm, 51.30 mm and 11.99 mm, respectively. 
The last two scenarios perform very similar and prove to 
nearly eliminate deflections of entirely in the system. The 
first scenario, whereas, still confirms to drastically reduce 
deflections with respect to the uncontrolled response. 
These results indicate that the LQR controller is more 
sensitive to increasing the importance of controlling the 
actuator force than with increasing importance on miti-
gating deflections, which means placing more weight on 
controlling the actuator force cause relatively larger in-
crease in displacement while doing the opposite do not 
produce the same reduction in displacements.

The decision as to which control parameters would 
be best to utilize for the system depends on the system 
needs. If maintaining an identical shape is very import-
ant to the system, this can essentially be accomplished 
using the second control scenario or, if one wants to be 

equation:

uVF ii ⋅=                                                                      (42)

Where u is the vector of displacements.

With the system and controller fully defined, the system, 
along with the control force, can be modeled in Simulink, 
the visual diagram of this system can be found in Figure 5.

As is shown in the above figure, the system is subject-
ed to the seismic excitation which will be used at each 
degree of freedom. The excitation is evaluated in the state 
space and the displacements and velocities at each de-
gree of freedom at time t are produced. These responses 
are then multiplied by the predetermined gain V of the 
controller, as well as the matrix which maps the gains 
to the appropriate nodes based on actuator placement. 
The additional force is added to the external excitation 
for the next step in the model. From this model, a plot of 
system response, actuator force, and member stress over 
the simulative time can be obtained.

Results and Discussion
The above depicted simulation was conducted for 

all sceneries listed in the previous section, the El Centro 
1940 earthquake data is used as the excitation signal and 
the response over a 60-second time interval was exam-
ined. Effects on displacement, maximum actuator force, 
internal forces in central members were all investigated.

The behavior of the response for each controller sce-
nario was similar for each actuator placement, the plots 
of the responses of all scenarios can be found in Figures 
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Figure 6: The time history response curve with actuators at different placements (a) Actuators at all members; (b) Actuators 
at outer struts; (c) Actuators at inner struts; (d) Actuators at inner struts; (e) Actuators at inner shorter cables; (f) Actuators at 
inner longer cables.
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deflections can be accomplished using the first control 
scenario, which also proves to reduce the required input 
successfully.

conservative, the third scenario can be the best choice. If 
however, some deflections would prove to be acceptable 
in the system, a controller which maintains fairly small 
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Figure 7: Internal force over time of cable 15 (a) Actuators at all members; (b) Actuators at inner longer cables.
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Figure 8: Internal force over time of strut 34 (a) Actuators at all members; (b) Actuators at inner longer cables.
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state feedback which means the displacement and veloc-
ity at every node is given, while, this is not realistic in real 
structure. Apart from this, the issue of nonlinearity is not 
taken into account in this paper considering the simpli-
fication of the programming. Additionally, as a natu-
ral extension of this research, a linear observer (KF for 
instance) in conjunction with LQR control algorithm, 
known as LQG control formulation, might be employed 
to implement active control of Tensegrity structures.
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Meanwhile, the effect that the different controller 
scenarios on reducing internal member forces were also 
investigated in this paper. Considering the similarity of 
this pattern of behavior for all actuator placements, here, 
only two actuator placements were utilized. Also, cable 
15 and strut 34 were chosen since they are central mem-
bers and thus, more likely to be subjected to large inter-
nal forces. Figure 7 and Figure 8 show the internal forces 
of cable 15 and strut 34 over the simulative time.

By taking a close look at these figures, the relation-
ship between the mitigation of deflection and the mem-
ber stresses can be obtained directly. Just as in the case of 
deflections, the third controller almost entirely eliminat-
ed stresses in member, while, the second controller also 
successfully reduced member stresses. However, the first 
controller which placed less importance on weighting on 
minimizing controller output with respect to the second 
one still produced member stresses which are consider-
ably less than in the uncontrolled scenario. It should be 
pointed out that in all controller scenarios, the cables re-
main to be always in tension and the struts remain to be 
always in compression, which are what should be expect-
ed. In other words, none of the components of the pla-
nar Tensegrity model with the properties given in Table 
1 will be laid off due to the tension in struts or slackening 
of cables.

Moreover, all control scenarios demonstrated to 
minimize the variations and thus, maximum internal 
force in members. This means that when control is used, 
members can be made more slender as they will be less 
stressed. In the case of much control, particularity in the 
third control, members will essentially only need to be 
designed for their initial prestress forces.

Conclusion
Tensegrity systems are prestressed, self-support-

ed configurations composing of tensioned cables and 
compressed struts. Due to their characteristics, they can 
be easily manipulated and moved to take on different 
shapes. This proficiency makes them great candidates 
to be incorporated into the idea of adaptable structures. 
This paper presents a theoretical analysis of dynamic re-
sponse and vibration control of a Tensegrity structure 
subjected to seismic excitation using active control tech-
niques. The control strategy adopted in this Tensegrity 
system is capable of meeting vibration control objective. 
Numerical results confirmed that LQR algorithm is pos-
sible to successfully actively control Tensegrity systems 
in order to minimize deflections, maintain shape, and 
ensure that the structures shape is always most optimal 
for the current loading. However, it does have a few lim-
itations, for instance, the LQR controller utilizes a full 
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