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Abstract
This paper describes the nonlinear dynamics of planar tensegrity bridges designed for minimal mass. The three-dimensional 
bridge benefits by the planar analysis in the most important manner relating to topology of material. We start with the 
minimal mass bridge, counting both structural mass and deck mass, and then derive the nonlinear dynamics to study 
dynamic behavior of the minimal mass bridge. Suggested design criteria include static and dynamic response. The minimal 
mass tensegrity has an optimal complexity (number of elements), and we show how the dynamic response influences the 
best choice of complexity, in comparison with the optimal complexity of the static design. The structures are first designed 
with minimal mass criteria, accounting for equilibrium and static stability conditions, and subsequently, we investigate 
the dynamics of such structures subject to constraints on displacements and loads perturbations. We employ an efficient 
approach to rigid body dynamics in matrix form, modified to include cable masses. We also show how to pass from the 
matrix to vector form of the dynamics. The equations of motion are derived analytically using Newtonian methods, and 
include damping and bar length constraints. Prestress of cables is added to tune stiffness. We show an application for 
artificial gravity space habitats.
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Introduction
Tensegrity structures are stable networks of com-

pressive members (rigid bodies, bars, or pipes) connect-
ed with a set of tensile member (cables or strings). The 
idea of using tensegrity structures for bridges is not new 
[1,2] but only recent contributions have shown their ef-
ficient use of mass [3,4]. Michell [5] derived the mini-
mal mass frames made of only compressed and only 
tensioned members (i.e. tensegrity) for simply support-
ed loads and torsional loads. This motivated the search 
for minimal mass structures for any loading conditions 
[6-8]. Bars and cables are particularly efficient to obtain, 
e.g., cable-stayed bridges or arch bridges that can carry 
dead loads, moving loads, wind, earthquakes. Stiffness 
requirements can modify the minimum mass design, 
but that is a good start. The parametric design [2,9,10] 
can be efficiently employed with the definition of few 
complexity parameters and aspect angles, allowing the 
optimization of the bridge as function of span, loads, 
restraints, and adopted materials. The proposed struc-
tural approach can also model moving bridges thanks 
to the cables that can be rolled or pulled to control the 
structural shape. Tensegrity statics has been studied in 

many works [7,11-13], and the minimal mass and opti-
mization problem has been applied in many fields like: 
acoustics dos Santos, et al. [14-19], biomechanics [20-
22], form finding [19,23-26], stability of Tbar tensegri-
ty structures [27]. The simplest form of the tensegrity 
dynamics was obtained by Skelton [28], where a matrix 
form was introduced, devoid of transcendental func-
tions. These equations characterize the dynamics of any 
class 1 tensegrity network (no bar-to-bar connections), 
whereas Lagrange multipliers were added to handle 
the constraints of class k tensegrity (k bars can be con-
nected to a node by frictionless ball joints) in Cheong 
and Skeltonand Nagase and Skelton [29,30]. The vector 
form of any class k tensegrity including gravity loads and 
damping are given as well [31-33], but the matrix form is 



• Page 49 •

Citation: Carpentieri G, Skelton RE (2017) On the Dynamics of Tensegrity Bridges. J Aerosp Eng Mech 1(1):48-62

Carpentieri and Skelton. J Aerosp Eng Mech 2017, 1(1):48-62 ISSN: 2578-6350  |

preferred here. The control problems of tensegrity struc-
tures include: Henrickson, et al. [34] to control the shape 
of airfoils; Masic and Skelton [35] studied the influence 
of the prestress on the dynamic behavior of tensegrity. 
The stiffness properties can be changed through the pre-
stress [36-38]. Other noticeable works on applied control 
are [39-41]. The optimal choice of cables to sense or ac-
tuate can be determined from Li, et al. [42] that derives 
the optimal selection of sensors and actuators for any 
linearized system. Bridges have attracted the interest of 
Engineers throughout the history because they represent 
the attempt of men to overcome obstacles. These struc-
tures are used wherever there is a river, a canyon or any 
road. Bridges allow easier connections between two dif-
ferent points and faster connections between people. In 
this paper, we have studied many typologies of optimal 
mass bridges showing their dynamic response to loads 
and perturbations. We also compared several complex-
ities of bridges with parametric design and we studied 
the most important problems regarding their behavior. 
Then, we developed a new design method that merges 
minimal mass and dynamic performance. We here show 
a study that merges the minimal mass design under stat-
ic loads with the dynamics of such designed structures. 
The goal is to obtain dynamic behavior that satisfies oth-
er constraints such as vibrations, stiffness, and deformed 
configurations. The author’s previous papers have shown 
the minimal mass bridges for two different parametric 
designs, the first [3] based on a prevailing superstruc-
ture, and the second [4] based on a prevailing substruc-
ture. We here study the dynamics of planar substructure 
tensegrity bridges of class 1 (i.e. bars are not attached to 
each other at any nodes) and 3D bridges of class 2. Those 
kinds of bridges are the minimal mass structures to carry 
vertical downwards loads along the deck. We here also 
study the vibration modes by perturbing the structures in 
static equilibrium, and we simulate the dynamics of such 
structures under moving loads. We enforce bar lengths 
constraints that keep constant bar lengths. Moreover, 

the dynamic formulation applies to any class 1 tensegrity 
structures with cable-to-cable nodes, free from bars. The 
dynamics for class 1 could be generalized to any class k 
tensegrity systems through the computation of the La-
grange multipliers as shown in Nagase and Skelton ; 
Cheong and Skelton ; Skelton  [28-30]. The string mass 
is added, and the prestress is used for stiffness tuning. 
The efficiency of such approach is shown with numeri-
cal results that highlight the vibration properties of the 
minimal mass bridges. The remainder of the paper is 
organized as follows. Section 5 deals with the dynamic 
formulation of class 1 tensegrity bridges. The statics and 
the minimal mass design are presented in Sect. 6. The 
parametric bridge is defined in Sect. 4. Numerical results 
of the minimal mass designs and dynamic simulations 
are presented in Sect. 7. Conclusions and future work are 
offered in Sect. 8.

Parametric Tensegrity Bridge Model
In this section, we describe the parameters that define 

the topology of the Tensegrity Bridge under study. It is 
possible to iteratively change those parameters to achieve 
optimal designs in terms of mass or dynamic properties. 
The planar bridge topology is considered here to eluci-
date the fundamental properties that are important in 
the vertical plane. We use the nomenclature from Car-
pentieri, et al. [4], referring to Figure 1 and Figure 2:

•	 a substructure bridge has no structure above the 
deck level;

•	 n denotes the number of self-similar iterations 
involved in the design;

•	 p denotes the number of bars in each substruc-
ture iteration;

•	 β is the aspect angle of the substructure mea-
sured from the horizontal.

For a tensegrity bridge with generic complexities n 
and p (Figure 1), the total number of nodes nn of each 

         

Figure 1: Adopted notations for forces and lengths of bars and cables for a substructure with generic complexity (n,p,q) = 
(n,1,0), [4].
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topology is given by

( )2 1 1n
nn p= − +                                   	         (1)

The number of bars nb and the number of cables ns are

( ) ( )( )2 1 ,  n = 1 2 1 +2n n n
b sn p p= − + −                           (2)

We consider class 1 bridges (i.e. compressive mem-
bers do not share common nodes, and p = 1) in which 
the supporting structure extend only behind the roadbed 
(i.e. substructure bridges, Figure 1) because Carpentieri, 
et al. [4] have shown that this topology ensures minimal 
mass designs. Each planar substructure bridge (Figure 1) 
is constrained with two fixed hinges at both ends with 
vertical reactions Ftot/2 and horizontal reactions wx. The 
planar module in Figure 1 can be replicated (along the 
direction out of the plane) to build three-dimensional 
structures able to carry vertical loads distributed on a 
horizontal plane.

Computation of deck forces
In this section we consider a distributed load along 

the span. Part of the load is the mass of the deck that 
must span the distance between adjacent support struc-
tures (complexity n will add 2n -1 supports).

The total load that the structure must support in-
cludes the mass of the deck, which increases with the dis-
tance that must be spanned between support points of 
the structure design (which is determined by the choice 
of complexity n). We therefore consider bridges with in-
creasing complexity n. The smallest n = 1 yields smallest 
structural mass and the largest deck mass. The required 
deck mass obviously approaches zero as the required 
deck span approaches zero, which occurs as n → ∞.

The deck, as illustrated in Figure 3, is composed by 
2n simply supported beams connecting the nodes on the 
deck. Let the deck parameters be labeled as: mass md, 
mass density ρd, yielding strength σd, width wd, thickness 
td and length equal to:

 = 
2d n

Ll              				            (3)

The cross sectional of the deck beam has a moment of 
inertia equal to: 3 = 12d d dI w t . Each beam is assumed 
to be loaded by a uniformly distributed vertical load 
summing to the total value F and the total self weight of 
the deck (F) (g = 9.81 ms-2):

2 = 
n

d
d

m gF ff
L L L

+ +              		          (4)

Assuming that the beam of a single deck section is 
simply supported between two consecutive nodes of the 
bridge, the maximum bending moment is equal to fd`2 
d/8 and the maximum stress is given by Navier’s equa-
tion [43]:

2

2

3 = 
4

d d
d

d d

f l
w t

σ                              		          (5)

The thickness of the deck beam is:

 = d
d

d d d

mt
w lρ

                              		          (6)

Substituting (3), (4) and (6) into (5) we get the follow-
ing equation for the mass of one deck section:

1 1
23 2 2

1 = 
2 2 2d n n n

c cm c+ +                	         	         (7)

Where:
2 3

1 2 2 3 2

3 16 = ,   = 
8 3
d d d

d d d

w g L Fc c
w g L

ρ σ
σ ρ

             	         (8)

         

Figure 2: Exemplary geometries of substructures for different values of the complexity parameters n (increasing downward) 
and p (increasing rightward), Carpentieri, et al. [4].
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plify notation.

•	 cables are straight elastic members, that can only take 
tensile forces;

•	 bars and cables are connected with frictionless ball-
joints eventually loaded with external forces at each 
node.

The ith node is located by the vector ni 
3∈ . By stack-

ing nodal vectors, we obtain the following nodal matrix:

[ ] 3
1 2 nN = n  n  ... n  ... ni n ∈                                (10)

The vector of external forces acting on the ith node is 
wi 

3∈ , and the matrix of external forces is:
3

1 2 nW = w  w  ... w  ... w n

n

n
i

×  ∈                      (11)

The vectors of the kth bar and cable are respectively 
bk 

3∈  and sk 
3∈ . For example, if the k bar connects 

nodes i and j, then bk = nj - ni. By stacking these vectors, 
we can obtain the following matrices of bars and cables:

3 3
1 2 n 1 2B = b  b  ... b  ... b , S = s  s  ... s  ... sb s

b s

n n
k k n

× ×   ∈ ∈       (12)

Let us now define the connectivity matrices of bars 
and cables CB b nn n×∈  and CS 

s nn n×∈ . The general ith 
row of CB (or CS) corresponds to the ith bar (or cable), and 
the element CBij (or CSij) is equal to: -1 if vector bi (or si) is 

The total force acting on each internal node on the 
deck is then the sum of the force due to the external loads 
and the force due to the deck:

 = 2n
tot dF F m g+                                                         (9)

Dynamics of Class 1 Tensegrity Bridges
This section describes the general notation of tenseg-

rity structures (Sect. 5.1) and the case of class 1 tensegrity 
(Sect. 5.2). Then, we derive the equations of motion for 
class 1 in matrix and vector form (Sect. 5.3). A simple 
but efficient algorithm for the bar lengths correction is 
presented (Sect. 5.4).

Basic notations
In the following we will indicate matrices with bold 

capital letters (i.e. X), vectors with bold lower case letters 
(i.e. x), while scalars are indicated with italic letters (i.e. 
x) Let now consider a tensegrity system composed of nn 
nodes, nb bars and ns cables. The following assumptions 
are used:

•	 bars are straight rigid bodies with uniform mass den-
sity, constant cross sectional, and negligible rotation-
al inertia about their longitudinal axis; tubes or pipes 
can easily be included but we treat solid bars to sim-

         

Figure 3: a) Schematic deck system for a substructure with complexity n = 3 and p = 1; b) Detail of a single deck module, 
Carpentieri, et al. [4].
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NM+NK = W                                               	        (20)

Where: M is the mass matrix defined as:
T T
B B ℝ ℝ

1ˆ ˆM = C mC +C mC
12

n nn n×∈                       (21)

and: ( )1 2m̂ = , ,..., b b

b

n n
ndiag m m m ×∈  is a diago-

nal matrix of the mass of each bar. The stiffness matrix 
K is given by:

T T
S S B B

ˆˆK = C ×− ∈ n nn nγC C λC                                  (22)

where λ̂ denotes the diagonal matrix of force density 
in bars, given by:

( )T ' 2 T T 2
S B

1 1ˆ ˆˆ ˆ ˆ = B B m B W-SγC C
12 2

λ ×− −   − + ∈  




b bn nl l    (23)

and: ˆ   b bn n×∈  is a diagonal matrix of terms 
22  = k kl b −− . Note that X    is an operator that keeps 

only the diagonal terms of the square matrix X and set to 
zero all the off-diagonal terms.

The equations of motion (20) have been integrated 
over time with a Runge-Kutta 4th order algorithm. It is 
worth noting that the above procedure accumulates nu-
merical errors due to the approximation of function n 
at each time step. This leads to errors in length of the 
bars. A procedure to keep constant the bar lengths are 
described in the following section.

Bar lengths constraint and addition of cable masses
Let’s call bk the vector of the kth bar. If lk is the original 

length, the error in length results:
2 2 2

k k =  = b .bk k k kh b l l− −        		         (24)

In the spirit of constraint stabilization [30], we can 
drive the constraint error to zero by augmenting the fol-
lowing to the dynamic equations:

2+  = 0k k kh hω                          			         (25)

ωk are the natural frequencies of the bar length correc-
tive function (to be chosen a priori). The above correc-
tion can be implemented in the dynamics described in 
the above section by correcting the bar force densities as:

ˆ ˆ ˆ = cλ λ ε−                                                                                                  (26)

Where: ( )1 2ˆ = diag , ,...,
bne e eε  and ( )2 2

k k = 2 b .b
2

k
k k k k ke b lωζ ω + −

, being ζk the damping of the bar length corrective func-
tion (also to be chosen a priori). We here show now how 
to include the mass of the cables in the dynamics (20). 
The following procedure allows adding the mass of the 
cables increasing the mass of the bars described in the 
above section. Then, the mass matrix can m̂ be modified 
as:

( ) ( )1 2 1 2m̂ = , ,..., , ,..., b b

b b

n nb b b s s s
n ndiag m m m diag m m m ×+ ∈    (27)

Where:

directed away from node jth, 1 if vector bi (or si) is direct-
ed toward node jth and 0 if vector bi (or si) does not touch 
node j. Then, for each tensegrity system, the following 
relationships yield:

T T
B SB = NC  , S = NC                                                                                             (13)

The center of mass of the k bar between nodes i and j 
is located by the vector rk = (ni + nj)/2. Collecting all the 
rk vectors, we get the following matrix:

3
1 2ℝ = r  r  ... r  ... r b

b

n
k n

×  ∈           		        (14)

Let us define now the matrix CR b nn n×∈ , in which 
the ith row corresponds to the bar bi and the element CRij 
is equal to: 1/2 if vector bi is touching node j, or 0 if vector 
bi does not touch node j. Then, the following yields:

T
ℝℝ = NC          			        	       (15)

Let now consider a cable k with: Young modulus of 
the material Esk, cross sectional Ask, and rest length Lk. 
The force density is defined as:

T
k

2

s s = max 1 ,0  ,     : ,k k
k sk k k k

k k

Lk c if s L
s s

γ
  

− + ≥  
  



       (16)  

 = 0                                                     :k k kif s Lγ <     (17)

Where: ksk = EskAsk/Lk, sk = ǁskǁ ,and ck is a damping 
coefficient. All the force densities γk can be collected in a 
diagonal matrix:

( )1 2γ̂ = γ  γ  ... γ ×∈ s s

s

n n
ndiag       		        (18)

Note that ( )1 2x̂ =   ..., ndiag x x x  is an operator that 
produces a diagonal matrix with the components x1, x2, 
···, xn of the vector x.

Class 1 tensegrity structures
Let now consider a tensegrity system in which 2nb 

nodes are connected to only one bar (class 1 tensegrity) 
and n0 nodes are pinned and connected to only cables. In 
this assumption, we have nn = 2nb + n0, and it is possible 
to stack the above defined matrices such that:

[ ] ( ) [ ] ( )0 02 2
B ℝ

1C  = I I 0 ,     C  = I I 0
2

b b b bn n n n n n× + × +− ∈ ∈    (19)

Where: I b bn n×∈  is the identity matrix, and 00 bn n×∈  
is the null matrix. Note also that, the nodal matrix (10) 
is ordered as [N1 N2 N0], where 3

1N bn×∈  and 3
2N bn×∈  

contain the initial and final nodes connecting the bars re-
spectively; and 03

0N n×∈  contains all the n0 pinned nodes 
at which only cables are connected.

Equations of motion
For any class 1 tensegrity system, the equations of 

motion can be written in the following matrix form in 
N coordinates:
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partitioned such that:

S1 1 S2 2
ˆ ˆˆ ˆSγC +Bλ = W ,      SγC +Bλ = W                        (35)

First of all, let’s sum equations (35):

S1 S2 1 2ˆSγ(C +C ) = W +W                                                  (36)

The ith columns of the system (36) is:

S1 S2 1 2ˆSγ(C +C )  = (W +W )i i                                            (37)

Applying the following rule: ˆ ˆxy = yx  in (37), we 
have:

S1 S2 S1 S2 1 2ˆSγ(C +C )  = S(C +C ) γ = (W +W )∧
i i i         (38)

Stacking up all equations (38), we obtain:

γ = τΓ                                                                                  (39)

Where:
( )
( )

( )

( )
( )

( )

S1 S2 1 1 21 1

1 22S1 S2 3 322

1 2S1 S2

S C C W Wγ
W WγS C C

 = ,  γ = ,  τ = 

W WγS C C

β α α β

α ββ

∧

∧
×

∧

 + +       + +   Γ ∈ ∈ ∈          +  +   

  





   (40)

All the solutions of (39), under the constraints γ ≥ 0 
and if there exist, will be of the form:

( )γ =   τ+ Iα ζ+ +Γ −Γ Γ               		          (41)

Where: Γ+ denotes the Moore-Penrose pseudo in-
verse of Γ, and ζ ∈ ℝα is any vector. System (39) can be 
partitioned such that:

[ ] 1
1 2

2

γ
 = 

γ
τ

 
Γ Γ  

 
                       	 	       (42)

Where Γ1 contains all independent columns of Γ. 
Then, the solution γ1 will be unique in terms of γ2:

( )1 1 2 2γ  = τ γ+Γ −Γ                        		         (43)

with the constraints: γ2 ≥ 0 and 1
+Γ  Γ1 > 0. Let’s find 

now a solutions for the force densities in the bars. The ith 
column of the second system of equations in (35) is:

S2 2,ˆb λ  = SγC W−i i i i                   	 	       (44)
which can be solved as:

S2 2,2

b ˆλ  = (SγC W )−
T
i

i i i
ib

 		                       (45)

Stacking up all the columns (45) in a matrix form, we 
obtain the system:

λ = γ ω βΛ − ∈                           		        (46)

where:
1 1

2,1 2,12 2
1 1

1
2 2

2,2 2,22 2 2
2 2

2, 2,2 2

b bˆSC W
λ

b bˆSC Wλ
λ = ,     =  ,   ω =  

λ
b bˆSC W

β β α β

β
β β

β β
β β

×

   
   
              ∈ Λ ∈ ∈                   
   
   

  



 

T T

S

T T

S

T T

S

b b

b b

b b

  (47)

• b
km  is the mass of kth bar from node i and j;

• ,,

, .

 = 
ss
j ki ks

k
b i b j

mm
m

n n
+  is the mass of the strings com-

peting to bar k

and: i k , ,
s
j km are the half of the mass of the strings 

attached to nodes i and j; nb,i, nb,j are the number of bars 
attached to nodes i and j (note that nb,I = nb,j = 1 for class 
1 structures).

Statics and Minimal Mass Design
We obtain in this section the statics equations as a 

particular case of the dynamics. Then, we design the 
structure for minimal mass requiring that the static equi-
librium is satisfied. The optimal designs are conducted 
under yielding and buckling constraints. In static con-
ditions, we will have N = N = 0  , and then the dynamics 
(20) reduces to:

3NK = W nn×∈                                                                        (28)

The stiffness matrix in statics is also equal to:

ST T
S B

B

γ̂ 0 C
K = C C = C  C  ˆ C0 λ

n nn nT ×   
 ∑ ∈     −   



 (29)

Then (28) becomes:

ST T
S B

B

γ̂ 0 C
N C  C   = Wˆ C0 λ

   
       −   

                                          (30)

Substituting (13) into (30):

[ ] S

B

γ̂ 0 C
S B   = Wˆ C0 λ

   
   −   

            		        (31)

Finally the statics equation is given in the form:

S B
ˆˆSγC BλC  = W−                            (32)

Note that  λ̂  in (32) is a unique function of  γ̂  for class 
1 tensegrity, as highlighted in (23). The system of equa-
tions (32) is also valid for any class k tensegrity systems 
(in which more than one bar can converge in the joints) 
but the computation of the Lagrange multipliers is re-
quired as illustrated in literature [28-30].

Minimal mass design for class 1
Let’s restrict to the special case of class 1 tensegrity in 

which: nb = β, ns = α, n = 2. In this case, the nodal, load 
and connectivity matrices can be rearranged such that:

[ ] [ ]3 2 3 2
1 2 1 2N = N N     W = W Wβ β× ×∈ ∈ 

  (33)

[ ] 2 2
B S S,1 S,2C  = I I     C  = C Cβ β α β× × − ∈ ∈  

  (34)

Where: N1, N2, W1, W2 are 3×β matrices, I = Iβ 
 β β×∈  is the identity matrix, and CS1, CS2 are α×β ma-

trices. With the assumptions (34), the system (32) can be 
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where:

•	 ρb and ρs are the mass densities per unit volume 
of bars and cables, respectively; 

•	 σb and σs are the yielding or buckling stress of the 
bars and yielding stress of the cables, respectively;

2 2 2
1 2 =   ... ;β  

T
b b b

2 2 2
1 2 =   ... .α  

T
s s s

Note that, for a class 1 structure, the solution λ in (46) 
is unique in term of γ.

Numerical Results
We here show numerical results on the minimal 
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              (48)

Finally, the minimal mass is achieved minimizing the 
function:

2 2

1 1
 = λ γ  = λ+ γ

β αρ ρ ρ ρ
σ σ σ σ= =

+∑ ∑ T Tb s b s
i i i i

i ib s b s

m b s  
     

(49)

         

Figure 4: Node settings and nomenclature of the modeled tensegrity bridges: (a) n = 1, (b) n = 2, (c) n = 3. Note that vertical 
axis has been rescaled for visual clarity. Nodes 3-4 (a), 7-8 (b) and 15-16 (c) are hinged to the ground.
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imal mass problem). Increasing complexity n from 1 to 
3, generally brings to a reduction of the radii of bars and 
cables but the number of member significantly increases.

It is worth noting that the deck cables (i.e. the hori-
zontal cables that connect each bar at the roadbed level) 
disappear for a pure minimal mass design for the choice 
of the external constraints (double fixed hinges). This 
would lead to a minimal mass design that, without the 
deck cables, is still in equilibrium under the vertical pay-
loads on the deck but it is not in a stable configuration 
(any horizontal perturbation of the nodes on the deck 
would activate a mechanism). For such reason, we have 
picked a minimum radius of the deck cables equal to 10 
mm for all the designs. We also consider the deck cables 
fully stretched (i.e. working at the yielding strength) in 
the static designs.

Dynamics of planar substructure bridges
Figure 4 shows the simulated planar substructure 

bridges. Initially, all the bridges are designed to carry the 
deck forces f exhibiting exactly the configurations illus-
trated in Figure 4. It is worth noting that, in such a static 
condition, the cables results prestressed of the required 
amount to carry the external loads. In particular, the de-

mass design (Sect. 7.1) and the dynamics (Sect. 7.2) of 
the substructure bridges presented in Sect. 4. We even 
show in Sect. 7.2.1 that the prestrain (i.e. the ratio be-
tween the unreformed length and stretched length of 
the cables) can be efficiently used to tune the stiffness of 
such bridges. Sect. 7.3 shows one possible extension of 
the proposed planar bridges to a 3D case. It is shown that 
such extension produces a class 2 tensegrity bridge (i.e. 
two bars can converge into a single node) that is able to 
carry out-of-plane actions due to wind or earthquakes. 
In all the examples, we assume mass density ρ = 7862 
kg/m3, yielding strength σ = 6.9 x 108 N/m2, and Young 
modulus E = 2.06 x 1011 N/m2 for bars, cables and deck 
beams. We show the results for bridges with: complexity 
n ranging between 1 and 3, span L = 12 m, aspect angles 
β = 10 deg (2D bridges in Sects. 7.1, 7.2, 7.2.1), and β = 20 
deg for the 3D bridge in Sect. 7.3, total external payload 
F = 12000 N, width of deck beams wd = 1.5 m. The bridg-
es are constrained with perfect hinges (both vertical and 
horizontal displacements prevented) at the start (x = 0) 
and at the end (x = L).

Static design of substructure bridges
We design in this section the three bridges for n = 

1 (Figure 4a), n = 2 (Figure 4b), and n = 3 (Figure 4c). 
Table 1 shows the main characteristics of the three dif-
ferent topologies (number of nodes (1), number of bars 
and cables (2)), and the value of the payloads computed 
with (9).

It is worth noting that the payload f = Ftot/2
n decreas-

es dramatically as complexity n increases. This is due to 
the increasing number of supports (in correspondence of 
each vertical bar) that are able to carry the load. For an 
infinite complexity n, we tend to a uniformly distributed 
load along the span of the bridge and the additional mass 
of the deck md in (7) is zero. 

The static design has been performed assuming the 
members working at the yielding strength reduced with 
a safety factor 10. In a real design, such safety factor must 
be opportunely tuned to avoid yielding or buckling fail-
ures of the members during the dynamic motion under 
real loads (e.g. moving trucks, variable winds or earth-
quakes). The present paper has been instead focused on 
the study of the dynamic properties (mean angular fre-
quencies) and the vibrations for changing complexities 
n and different kind of perturbations. Table 2, Table 3, 
and Table 4 show the results of the minimal mass designs 
of the three tensegrity bridges illustrated in Figure 4. In 
particular, we report the radii, rest lengths and elastic 
stiffness of each cable and radii and masses of the bars. 
The above quantities are obtained minimizing the mass 
function (49) over the force densities of the members 
(see Nagase and Skelton [30] for more detail on the min-

Table 1: Topology and payloads on the tensegrity bridges for 
n = 1-3 (Figure 4).

n nn nb ns l[m] f[N]
1 4 1 4 6 31817.4
2 8 3 10 3 7402.87
3 16 7 22 1.5 2383.23

Table 2: Minimal mass design for n = 1 (Figure 4a).

Cable r [mm] L0 [m] ks × 107 [N/m] bar r [mm] mb [kg]
1-3 10.00 5.998 1.079 1-2 12.10 1.903
2-3 29.00 6.021 9.051 - - -

Table 3: Minimal mass design for n = 2 (Figure 4b).

Cable r [mm] L0 [m] ks × 108 [N/m] bar r [mm] mb [kg]
1-7 10.00 2.999 0.2158 1-4 5.80 0.2214
4-7 24.20 3.0105 1.2635 2-5 8.30 0.8856
4-2 14.00 3.0105 0.4212 - - -
5-4 1.98 3.0105 0.8423 - - -

Table 4: Minimal mass design for n = 3 (Figure 4c).

Cable r [mm] L0 [m] k0 × 108 [N/m] bar r [mm] mb [kg]
1-10 10.00 1.4995 0.4316 1-8 3.30 0.0356

8-15 21.00 1.5052 1.8983 2-9 4.70 0.1425
8-2 7.90 1.5052 0.2712 3-10 3.30 0.0356
8-9 19.50 1.5052 1.6271 4-11 6.60 0.5702
9-10 11.20 1.5052 0.5424 - - -
9-11 15.90 3.0105 0.5424 - - -
2-10 7.90 1.5052 0.2712 - - -
4-10 13.80 1.5052 0.8135 - - -
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Table 5 reports, at each line, the displacement assigned 
to the bars for each simulation and the mean angular fre-
quencies measured numerically at the deck nodes of the 
structures.

Figure 5 contains significant snapshots of the de-
formed shape of the bridges during the simulations. In 
particular, Figure 6 shows the time histories of the ver-
tical displacements (nz) of the node on the deck (i.e. all 
nodes with y = 0). From such charts we have numerical-
ly estimated the period of vibration T, the frequencies 
of vibration f = T-1 and the angular frequencies ω = 2πf 
(Table 5).

We have indicated in Figure 5 the slack cables with 
red dashed lines, and the initial configuration with black 
dashed lines. Table 5 shows that the angular frequencies 
increase with complexity n. In particular, for n = 1 we 
have a mean  ω  = 50.27 rad/s, indeed for n = 2 we ob-
tained ω  = 51.87 rad/s, and for n = 3 rad/s it raises to ω  
= 64.93 rad/s (see Table 5).

Stiffness calibration: The design of real bridges can-
not be conducted only looking at statics as discussed in 
Sect. 7.1. One should check that the bridge doesn’t de-
form more than some required values (usually decided 
by laws) under the external disturbances such as mov-
ing loads or wind. In other word, the bridge must have 
a minimum stiffness that prevents excessive displace-
ments. In this section we show that the proposed bridges 

formed lengths can be obtained with the relationships in 
Sect. 4 and the geometry showed in Figure 4. The real rest 
lengths of the cables have been reported in Table 2, Table 
3 and Table 4.

We have performed 6 dynamic simulations exciting 
the structures with an initial vertical displacement δ = 
0.1 m to the bars. Alternatively, we have perturbed, for 
each simulation, bars of the same length with the same 
displacement δ. We did one simulation for the bridge 
with n = 1 (one bar) in Figure 4. The case n = 2 (three 
bars) in Figure 4, have been simulated fist moving the 
central bar and keeping the other two bars fixed, and 
then we have fixed the central bar and perturbed the re-
maining bars. Proceeding with the same spirit, we have 
performed three simulations for the case n = 3 in Figure 
4. All simulations in this section do not include damping. 

         

Figure 5: Time snapshots: (a) n = 1, (b-c) n = 2, (d-f) n = 3. Note that displacements have been amplified for visual clarity with 
a factor 5 for n = 1, and a factor 3 for n = 2-3; dashed black lines indicate the initial position, and dashed red lines indicate 
slack cables.

Table 5: Dynamic properties of the simulated tensegrity 
bridges. δi, T, f and ω are the initial vertical displacements, the 
period of vibration, the frequency of vibration and the angular 
frequencies.

n δ1 [m] δ2 [m] δ3 [m] T [s] f [Hz] ω [rad/s]
1 0.1 - - 0.125 8.00 50.27

2 0.1 0 - 0.128 7.83 49.20
2 0 0.1 - 0.115 8.68 54.54
3 0.1 0 0 0.122 8.19 51.46
3 0 0.1 0 0.092 10.91 68.55
3 0 0 0.1 0.084 11.90 74.77
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ogy, moreover, it is sufficient to increase the prestrain of 
the deck strings to increase significantly the mean ver-
tical stiffness of the structure. The tuning of the deck 
strings allows to keep the flat shape of the roadbed and 

can be designed such that their stiffness satisfies any pre-
scription could be imposed by law.

In particular, the prestrain is a typical way to control 
stiffness of tensegrity structures. For the proposed topol-

         

Figure 6: Time hystories of the vertical displacements of the deck nodes for different complexities: (a) n = 1, (b-c) n = 2, (d-f) n = 3.
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Figure 7: Geometry of a 3D bridge for n = 2: (a) 3D view; (b) top view; (c) lateral view; (d) front view.

         

Figure 8: Snapshots of the 3D bridge for a traveling load (front view). Nodal displacements are amplified 300 times for 
visual clarity.
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nected by two bars. In this condition, the dynamics pre-
sented in Sect. 5.3 slightly has to be changed to include 
the computation of the Lagrange multipliers. A detailed 
formulation of such kind of dynamics is out of the aims 
of the present paper and can be found in Skelton [28]; 
Cheong and Skelton [29]; Nagase and Skelton [30].

Two simulations of the 3D bridge have been per-
formed: a first simulation under a vertical traveling load, 
and a second simulation under horizontal loads (due, 
for example, to wind). Both simulations include also a 
damping factor of ck = 25000 Ns/m. A first simulation 
of the 3D bridge was performed considering the bridge 
subject only to a traveling impulsive load f = 3701.44 N. 
In detail, the forces f1, ..., f3 on the deck have been set to:

1

, if:   0.25 
 =  

0, if: 0.25     0.75 
f t s

f
s t s

<
 ≤ <

                   (50)

2

0, if:   0.25 
 = ,    if: 0.25     0.5 

0, if: 0.5     0.75 

t s
f f s t s

s t s

<
 ≤ <
 ≤ <

                   (51)

Figure 8 shows three significant snapshots of the 3D 
bridge for a traveling load. The three plots correspond 
to the deformed configurations of the bridge before the 
traveling load change position, proceeding rightward. It 

minimize the mass (and then cost) required for the pre-
strain since not all the cables have to be stretched.

Table 6 shows the angular frequencies for 3 levels of 
prestrain of the deck cables (p1 = 0.99, p2 = 0.95, p3 = 0.9). 
Such frequencies have been computed numerically for 
the 6 simulations showed in Sect. 7.2. We can notice that, 
such small increases of the prestrain bring to very large 
increases of the angular frequencies that are proportion-
ally related to the stiffness.

Extension to 3D case
Let us consider now the 3D bridge in Figure 7. Such 

structure has been obtained coupling two planar tenseg-
rity bridges of complexity n = 2 (Figure 4). The obtained 
structure has nn = 16, nb = 12, ns = 50. We have obtained 
a tensegrity structure of class 2 since the nodes are con-

         

Figure 9: Vertical displacements of the deck nodes for a traveling load.

Table 6: Mean angular frequencies for different prestrain of the 
deck strings: ωp1: p1 = 0.99, ωp2: p2 = 0.95, ωp3: p3 = 0.9.

n δ1 [m] δ2 [m] δ3 [m] ωp1 [rad/s] ωp2 [rad/s] ωp3 [rad/s]
1 0.1 - - 50.27 118.65 153.25

2 0.1 0 - 49.20 159.88 213.71
2 0 0.1 - 54.54 113.42 151.77
3 0.1 0 0 51.46 139.84 225.77
3 0 0.1 0 68.55 140.09 193.03
3 0 0 0.1 74.77 138.15 194.53
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changes position to the next point.

We have performed a second simulation of the 3D 
bridge in Figure 7 under horizontal impulsive loads of 
250 N applied to the nodes with y = 0. The total load is 
then 1500 N. Such impulses have duration of 0.25 s and 
the total simulation time was set to 0.75 s. The deformed 

is worth to denote a remarkable vertical stiffness of the 
bridge from the displacements illustrated in Figure 9 
(we have increased the displacements 300 times for visu-
al clarity). The vertical displacements of the deck nodes 
are showed in Figure 9 and the damping have been cal-
ibrated such that the oscillation decades before the load 

         

Figure 10: Snapshot of the 3D bridge under horizontal loads at t = 0.2 s. Nodal displacements are amplified 10 times for 
visual clarity.

         

Figure 11: Horizontal displacements of the deck nodes for horizontal loads.
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The modern design approach that we have present-
ed allows its application to several types of real bridge 
structures:

•	 Arch Bridges: they consist of one or more arch struc-
tures, pushing each horizontally at both side; they can 
allow an above or below deck level (respectively sub-
structure or superstructure);

•	 Suspended Bridges: they typically consist of two com-
pressive towers and a net of tensile cables in the lon-
gitudinal and vertical directions, that directly support 
the deck;

•	 Cable-Stayed Bridges: they work similarly to sus-
pended bridges but in this case there is a system of 
inclined secondary cables that prestress the deck in 
compression.

•	 Beam Bridges: the main structure is made of one or 
more beams in bending, typically each beam is simply 
supported to allow rigid deformations (eg. in case of 
earthquake) without stresses; 

•	 Truss Bridges: they are made of members in com-
pression (struts) and in tension (tie) connected with 
ball joints, so each member is not in bending.

The dynamics of tensegrity bridges will allow, as fu-
ture work, further design constraints on stiffness issues 
(vibration frequencies, mode shapes, displacements for 
high winds conditions, etc). It is worth noting, however, 
that the capability all of these choices and adjustments 
are within the free parameters of the designs in this pa-
per. The presented dynamics approach will evaluate the 
value (economics and performance tradeoffs) the use of 
feedback control for the deployable and service func-
tions, or to adjust the stiffness of the structure (varying 
the prestress of the cables) to modify stiffness or damp-
ing after storm damage.

Future work will regard the analysis of general class k 
bridges (i.e. k bars terminate on at least one node). We 
also address to future work the control problem of such 
structures that can be achieved through the actuation of 
the cables. The cable control will lead also to deployable 
bridges, and the reduction of resonance phenomena.

References
1.	 Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi AA, et 

al. (2010) Design optimization and dynamic analysis of a 
tensegrity-based footbridge. Eng Struct 32: 3650-3659.

2.	 Rhode-Barbarigos L, Ali NBH, Motro E, et al. (2010) De-
signing tensegrity modules for pedestrian bridges. Eng 
Struct 32: 1158-1167.

3.	 Skelton RE, Fraternali F, Carpentieri G, et al. (2014) Mini-
mum mass design of tensegrity bridges with parametric ar-
chitecture and multiscale complexity. Mech Res Commun 
58: 124-132.

shape of the bridge at time t = 0.2 s is illustrated in Figure 
10. The bridge shows rolling (or torsional) oscillations. 
Such kind of oscillations can be reduced changing the 
amount of prestrain as discussed in Sect. 7.2.1 or add-
ing another layer of deck made of horizontal cross cables 
and bars. Figure 11 shows the horizontal displacements 
(with a rescaling factor 10 for visual clarity) of the deck 
nodes of the bridge under the horizontal loads. The ver-
tical dashed line remarks the end of the impulsive loads. 
As easily predictable, the central node exhibits the bigger 
displacements.

Concluding Remarks and Future Work
We have studied the dynamics of tensegrity bridges 

with parametric topology and minimal mass properties. 
We have presented the dynamics of tensegrity structures 
(Sect. 5) for class 1 bridges. Such theory allows to solve in 
matrix or vector form the dynamics of rigid bars, enforc-
ing the bar length constraint. The original formulation of 
the tensegrity dynamics has been modified to account for 
cable mass and elastic damping of the cables. An ad-hoc 
algorithm for the time integration with Runge-Kutta 4th 
order scheme has been employed in a MatLab® routine.

The topology of the proposed bridge is function of the 
number of the self-similar iterations (complexity n), the 
number of bars of each substructure iteration (complex-
ity p), and the aspect angle below the horizontal roadway 
(angle β) (Sect. 4).

First of all, the bridges were designed under verti-
cal loads due to the external loads and the deck mass. 
We were using the theory of minimal mass bridges giv-
en in Skelton, et al. [3]; Carpentieri, et al. [4] to design 
the bridges from n = 1,2 and 3, subject to buckling and 
yielding constraints, and with fixed-hinge/fixed-hinge 
boundary conditions (Sect. 6). The prestrain (i.e. the ra-
tio between the stretched length and the rest lengths of 
the cables) has been used at different levels (from 0.9 to 
0.99) to tune the vertical stiffness of the bridges.

We have employed the planar bridge module with 
complexity n = 2 to the design of a 3D bridge (Section 
7.3). The dynamics of such bridge has shown the behav-
ior under both vertical moving loads, and horizontal im-
pulses.

We obtained smart designs of tensegrity bridges with 
optimal dynamic properties and designed with minimal 
mass strategies. This paper showed that the minimal 
mass design can be conveniently coupled with the dy-
namics to obtain designs featuring any desired behavior. 
The present approach can be successfully employed to 
design innovative structures like composite systems for 
civil engineering applications like tunnels, wells and 
domes.

http://www.sciencedirect.com/science/article/pii/S0141029610002981
http://www.sciencedirect.com/science/article/pii/S0141029610002981
http://www.sciencedirect.com/science/article/pii/S0141029610002981
http://www.sciencedirect.com/science/article/pii/S0141029609004362
http://www.sciencedirect.com/science/article/pii/S0141029609004362
http://www.sciencedirect.com/science/article/pii/S0141029609004362
http://www.sciencedirect.com/science/article/pii/S0093641313001742
http://www.sciencedirect.com/science/article/pii/S0093641313001742
http://www.sciencedirect.com/science/article/pii/S0093641313001742
http://www.sciencedirect.com/science/article/pii/S0093641313001742


• Page 62 •

Citation: Carpentieri G, Skelton RE (2017) On the Dynamics of Tensegrity Bridges. J Aerosp Eng Mech 1(1):48-62

Carpentieri and Skelton. J Aerosp Eng Mech 2017, 1(1):48-62 ISSN: 2578-6350  |

24.	Masic M, Skelton RE, Gill PE (2005) Algebraic tensegrity 
formfinding. Int J Solids Struct 42: 4833-4858.

25.	Motro R, Najari S, Jouanna P (1987) Static and dynam-
ic analysis of tensegrity systems. Shell and Spatial Struc-
tures: Computational Aspects 26: 270-279.

26.	Micheletti A, Williams W (2007) A marching procedure for 
form-finding for tensegrity structures. J Mech Mat Struct 2: 
857-882.

27.	Skelton RE, Montuori R, Pecoraro V (2016) Globally stable 
minimal mass compressive tensegrity struc- tures. Compos 
Struct 141: 346-354.

28.	Skelton RE (2005) Dynamics and control of tensegrity sys-
tems. In: IUTAM Symposium on Vibration Control of Non-
linear Mechanisms and Structures, Springer, Netherlands, 
309-318.

29.	Cheong J, Skelton RE (2015) Nonminimal Dynamics of 
General Class k Tensegrity Systems. International Journal 
of Structural Stability and Dynamics 15.

30.	Nagase K, Skelton RE (2014) Minimal mass tensegrity 
structures. Journal of the International Association for Shell 
and Spatial Structures 55: 37-48.

31.	Sultan C, Corless M, Skelton RE (2002) Linear dynamics of 
tensegrity structures. Eng Struct 24: 671-685.

32.	Cheong J, Skelton RE, Cho Y (2014) A numerical algorithm 
for tensegrity dynamics with non-minimal coordinates. 
Mech Res Commun 58: 46-52.

33.	Josep M Mirats Tur, Sergi Hernandez Juan (2009) Tenseg-
rity frameworks: Dynamic analysis review and open prob-
lems. Mechanism and Machine Theory 44: 1-18.

34.	Henrickson JV, Valasek J, Skelton RE (2015) Shape Con-
trol of Tensegrity Structures. AIAA SPACE 2015 Confer-
ence and Exposition, California.

35.	Masic M, Skelton RE (2006) Selection of prestress for op-
timal dynamic/control performance of tensegrity structures. 
Int J Solids Struct 43: 2110-2125.

36.	Tibert G (2002) Deployable tensegrity structures for space 
applications. Royal Institute of Technology.

37.	Calladine CR (1978) Buckminster Fuller’s “tensegrity” 
structures and Clerk Maxwell’s rules for the construction of 
stiff frames. Int J Solids Struct 14: 161-172.

38.	Guest S (2006) The stiffness of prestressed frameworks: a 
unifying approach. Int J Solids Struct 43: 842-854.

39.	Djouadi S, Motro R, Pons JC, et al. (1998) Active control of 
tensegrity systems. J Aerospace Eng 11.

40.	Bernard A, Smith IF (2007) Tensegrity active control: multi-
objective approach. J Comput in Civil Engineering 21: 3-10.

41.	Narongsak K, Williamson D (2002) Modelling and control 
of class NSP tensegrity structures. International Journal of 
Control 75: 123-139.

42.	Li F, de Oliveira MC, Skelton RE (2008) Integrating In-
formation Architecture and Control or Estimation Design. 
SICE Journal of Control, Measurement, and System Inte-
gration 1: 120-128.

43.	Gere JM, Timoshenko SP (1997) Mechanics of Materials. 
PWS Publishing Company.

4.	 Carpentieri G, Skelton RE, Fraternali F (2015) Minimum 
mass and optimal complexity of planar tensegrity bridges. 
International Journal of Space Structures 30: 221-244.

5.	 Michell AGM (1904) The limits of economy of material in 
frame-structures. Philos Mag 8: 589-597. 

6.	 Skelton RE, de Oliveira MC (2010) Optimal tensegrity 
structures in bending: the discrete Michell truss. J Franklin 
I 347: 257-283.

7.	 Skelton RE (2009) Tensegrity Systems.
8.	 Skelton RE, Nagase K (2012) Tensile tensegrity structures. 

Int J Space Struct 27.
9.	 Sakamoto T, Ferr`e A, Kubo M (2008) From Control to De-

sign: Parametric/Algorithmic Architecture. Actar, Barcelo-
na, Newyork.

10.	Phocas MC, Kontovourkis O, Matheou M (2012) Kinetic 
hybrid structure development and simulation. Int J Archit 
Comput 10.

11.	Murakami H (2001) Static and dynamic analyses of tenseg-
rity structures. Part II. Quasi-static analysis. Int J Solids 
Struct 38: 3615-3629.

12.	Pellegrino S (1990) Analysis of prestressed mechanisms. 
Int J Solids Struct 26: 1329-1350.

13.	Williamson D, Skelton RE, Han J (2003) Equilibrium condi-
tions of a tensegrity structure. Int J Solids Struct 40: 6347-
6367.

14.	Fraternali F, Senatore L, Daraio C (2012) Solitary waves 
on tensegrity lattices. J Mech Phys Solids 60: 1137-1144.

15.	Favata A, Micheletti A, Podio-Guidugli P, et al. (2016) Ge-
ometry and Self-stress of Single-Wall Carbon Nanotubes 
and Graphene via a Discrete Model Based on a 2nd-Gen-
eration REBO Potential. J Elasticity 125: 1-37.

16.	dos Santos FA, Rodrigues A, Micheletti A (2015) Design 
and experimental testing of an adaptive shape-morphing 
tensegrity structure, with frequency self-tuning capabilities, 
using shape-memory alloys. Smart Mat St 24: 105008.

17.	Fraternali F, Carpentieri G, Amendola A, et al. (2014) Mul-
tiscale tunability of solitary wave dynamics in tensegrity 
metamaterials.

18.	Xu GK, Li B, Feng XQ, et al. (2016) A Tensegrity Model of 
Cell Reorientation on Cyclically Stretched Substrates. Bio-
phys J 111: 1478-1486.

19.	Zhang LY, Guang-Kui Xu (2015) Negative stiffness behav-
iors emerging in elastic instabilities of prismatic tenseg- ri-
ties under torsional loading. Int J Mech Sci 103: 189-198.

20.	Ingber DE (1998) The architecture of life. Sci Am 278: 48-
57.

21.	Vera C, Skelton RE, Bossens F, et al. (2005) 3-D nanome-
chanics of an erythrocyte junctional complex in equibiaxial 
and anisotropic deformations. Ann Biomed Eng 33: 1387-
1404.

22.	De Oliveira M, Vera C, Valdez P, et al. (2010) Nanome-
chanics of multiple units in the erythrocyte membrane skel-
etal network. Ann Biomed Eng 38: 2956-2967.

23.	Pellegrino S (1986) Mechanics of Kinematically Indetermi-
nate Structures. University of Cambridge, England, U.K.

DOI: 10.36959/422/426 | Volume  1 | Issue 1
SCHOLARS.DIRECT

http://www.sciencedirect.com/science/article/pii/S0020768305000351
http://www.sciencedirect.com/science/article/pii/S0020768305000351
https://link.springer.com/chapter/10.1007/978-3-642-83015-0_24
https://link.springer.com/chapter/10.1007/978-3-642-83015-0_24
https://link.springer.com/chapter/10.1007/978-3-642-83015-0_24
http://msp.org/jomms/2007/2-5/p03.xhtml
http://msp.org/jomms/2007/2-5/p03.xhtml
http://msp.org/jomms/2007/2-5/p03.xhtml
http://www.sciencedirect.com/science/article/pii/S0263822316300174
http://www.sciencedirect.com/science/article/pii/S0263822316300174
http://www.sciencedirect.com/science/article/pii/S0263822316300174
https://link.springer.com/chapter/10.1007/1-4020-4161-6_28
https://link.springer.com/chapter/10.1007/1-4020-4161-6_28
https://link.springer.com/chapter/10.1007/1-4020-4161-6_28
https://link.springer.com/chapter/10.1007/1-4020-4161-6_28
http://www.worldscientific.com/doi/abs/10.1142/S0219455414500424
http://www.worldscientific.com/doi/abs/10.1142/S0219455414500424
http://www.worldscientific.com/doi/abs/10.1142/S0219455414500424
http://www.sciencedirect.com/science/article/pii/S0141029601001304
http://www.sciencedirect.com/science/article/pii/S0141029601001304
http://www.sciencedirect.com/science/article/pii/S009364131400010X
http://www.sciencedirect.com/science/article/pii/S009364131400010X
http://www.sciencedirect.com/science/article/pii/S009364131400010X
http://www.sciencedirect.com/science/article/pii/S0094114X08001444
http://www.sciencedirect.com/science/article/pii/S0094114X08001444
http://www.sciencedirect.com/science/article/pii/S0094114X08001444
http://vscl.tamu.edu/valasek/papers/AIAA-2015-4502.pdf
http://vscl.tamu.edu/valasek/papers/AIAA-2015-4502.pdf
http://vscl.tamu.edu/valasek/papers/AIAA-2015-4502.pdf
http://www.sciencedirect.com/science/article/pii/S0020768305003641
http://www.sciencedirect.com/science/article/pii/S0020768305003641
http://www.sciencedirect.com/science/article/pii/S0020768305003641
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.731.9984
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.731.9984
http://www.sciencedirect.com/science/article/pii/0020768378900525
http://www.sciencedirect.com/science/article/pii/0020768378900525
http://www.sciencedirect.com/science/article/pii/0020768378900525
http://www.sciencedirect.com/science/article/pii/S0020768305001198
http://www.sciencedirect.com/science/article/pii/S0020768305001198
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290893-1321%281998%2911%3A2%2837%29
http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290893-1321%281998%2911%3A2%2837%29
https://infoscience.epfl.ch/record/117961/files/Adam-Smith-Postprint-2007-JCCE-MultiObjective .pdf
https://infoscience.epfl.ch/record/117961/files/Adam-Smith-Postprint-2007-JCCE-MultiObjective .pdf
http://www.tandfonline.com/doi/abs/10.1080/00207170110070563
http://www.tandfonline.com/doi/abs/10.1080/00207170110070563
http://www.tandfonline.com/doi/abs/10.1080/00207170110070563
https://www.jstage.jst.go.jp/article/jcmsi/1/2/1_2_120/_article
https://www.jstage.jst.go.jp/article/jcmsi/1/2/1_2_120/_article
https://www.jstage.jst.go.jp/article/jcmsi/1/2/1_2_120/_article
https://www.jstage.jst.go.jp/article/jcmsi/1/2/1_2_120/_article
http://journals.sagepub.com/doi/abs/10.1260/0266-3511.30.3-4.221
http://journals.sagepub.com/doi/abs/10.1260/0266-3511.30.3-4.221
http://journals.sagepub.com/doi/abs/10.1260/0266-3511.30.3-4.221
http://www.tandfonline.com/doi/abs/10.1080/14786440409463229
http://www.tandfonline.com/doi/abs/10.1080/14786440409463229
http://www.sciencedirect.com/science/article/pii/S0016003209001367
http://www.sciencedirect.com/science/article/pii/S0016003209001367
http://www.sciencedirect.com/science/article/pii/S0016003209001367
http://www.fernandofraternaliresearch.com/presentazioni/course.pdf
http://journals.sagepub.com/doi/abs/10.1260/0266-3511.27.2-3.131
http://journals.sagepub.com/doi/abs/10.1260/0266-3511.27.2-3.131
http://trove.nla.gov.au/work/26010240?q&versionId=45855119
http://trove.nla.gov.au/work/26010240?q&versionId=45855119
http://trove.nla.gov.au/work/26010240?q&versionId=45855119
http://journals.sagepub.com/doi/abs/10.1260/1478-0771.10.1.67
http://journals.sagepub.com/doi/abs/10.1260/1478-0771.10.1.67
http://journals.sagepub.com/doi/abs/10.1260/1478-0771.10.1.67
http://www.sciencedirect.com/science/article/pii/S002076830000233X
http://www.sciencedirect.com/science/article/pii/S002076830000233X
http://www.sciencedirect.com/science/article/pii/S002076830000233X
http://www.sciencedirect.com/science/article/pii/0020768390900827
http://www.sciencedirect.com/science/article/pii/0020768390900827
http://www.sciencedirect.com/science/article/pii/S0020768303004001
http://www.sciencedirect.com/science/article/pii/S0020768303004001
http://www.sciencedirect.com/science/article/pii/S0020768303004001
http://www.sciencedirect.com/science/article/pii/S0022509612000385
http://www.sciencedirect.com/science/article/pii/S0022509612000385
https://link.springer.com/article/10.1007/s10659-015-9568-8
https://link.springer.com/article/10.1007/s10659-015-9568-8
https://link.springer.com/article/10.1007/s10659-015-9568-8
https://link.springer.com/article/10.1007/s10659-015-9568-8
http://iopscience.iop.org/article/10.1088/0964-1726/24/10/105008
http://iopscience.iop.org/article/10.1088/0964-1726/24/10/105008
http://iopscience.iop.org/article/10.1088/0964-1726/24/10/105008
http://iopscience.iop.org/article/10.1088/0964-1726/24/10/105008
https://www.scribd.com/document/241454168/Multiscale-Tunability-of-solitary-wave-dynamics-in-tensegrity-metamaterials
https://www.scribd.com/document/241454168/Multiscale-Tunability-of-solitary-wave-dynamics-in-tensegrity-metamaterials
https://www.scribd.com/document/241454168/Multiscale-Tunability-of-solitary-wave-dynamics-in-tensegrity-metamaterials
https://www.ncbi.nlm.nih.gov/pubmed/27705770
https://www.ncbi.nlm.nih.gov/pubmed/27705770
https://www.ncbi.nlm.nih.gov/pubmed/27705770
https://www.infona.pl/resource/bwmeta1.element.elsevier-19616a06-9791-3bce-980e-60cbda431a45
https://www.infona.pl/resource/bwmeta1.element.elsevier-19616a06-9791-3bce-980e-60cbda431a45
https://www.infona.pl/resource/bwmeta1.element.elsevier-19616a06-9791-3bce-980e-60cbda431a45
https://www.ncbi.nlm.nih.gov/pubmed/11536845
https://www.ncbi.nlm.nih.gov/pubmed/11536845
https://www.ncbi.nlm.nih.gov/pubmed/16240087
https://www.ncbi.nlm.nih.gov/pubmed/16240087
https://www.ncbi.nlm.nih.gov/pubmed/16240087
https://www.ncbi.nlm.nih.gov/pubmed/16240087
https://www.ncbi.nlm.nih.gov/pubmed/20490687
https://www.ncbi.nlm.nih.gov/pubmed/20490687
https://www.ncbi.nlm.nih.gov/pubmed/20490687

	Title
	Abstract
	Keywords
	Introduction
	Parametric Tensegrity Bridge Model
	Computation of deck forces 

	Dynamics of Class 1 Tensegrity Bridges
	Basic notations
	Class 1 tensegrity structures 
	Equations of motion
	Bar lengths constraint and addition of cable masses

	Statics and Minimal Mass Design
	Minimal mass design for class 1 

	Numerical Results 
	Static design of substructure bridges
	Dynamics of planar substructure bridges
	Extension to 3D case 

	Concluding Remarks and Future Work 
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	References

