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Abstract
This paper presents a modified particle filter for SINS/SAR (Strap-down Inertial Navigation System / Synthetic Aperture 
Radar) integrated navigation. This method is developed by adopting Markov Chain Monte Carlo (MCMC) moves to the 
p article regularization process. It combines local resampling with MCMC moves to prevent particle degeneracy and also 
guarantee that the resultant particles are in the same distribution as probability distribution function, without causing extra 
noise on state estimate. Simulation results demonstrate that the proposed method can effectively prevent the problem of 
particle degeneracy, and its filtering accuracy for SINS/SAR integrated navigation is much higher than that of the classical 
particle filter and regularized particle filter.
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Introduction
SINS/SAR (Strap-down Inertial Navigation System/Synthetic 

Aperture Radar) integrated navigation aims to obtain high-precision 
position and azimuth by using correlated images [1,2]. The high-
precision information of SINS can be used for motion compensation 
and precise calibration of antennae to correct the error of SAR. In 
reverse, under the support of digital map databases, SAR can also 
correct the error of SINS, which is increased with time, according to 
the target information [3]. Due to the complementary nature of SINS 
and SAR, SINS/SAR integrated navigation represents a promising 
solution for achieving high-precision positioning navigation.

The precision of SINS/SAR integrated navigation depends on the 
performance of the filtering algorithm. Currently, the extended Kalman 
filter is a commonly used method for nonlinear systems [4,5]. This is 
an approximation method, in which nonlinear system equations are 
linearized by the Taylor expansion and the linearized states are assumed 
to obey the Gaussian distribution. The linearization stage of the state 
equations may lead to the biased or even divergent filtering solution [6].

The particle filter (PF) is an optimal recursive Bayesian filtering 
method based on Monte Carlo simulation [7,8]. It can produce a 
sample of independent random variables with distribution subject to the 
conditional probability distribution. Since this method is not limited by 
linearization error and the assumption of Gaussian noise, it can be used 
to deal with nonlinear system models and non-Gaussian noise. It is also 
easier to implement, even for high-dimensional problems. Therefore, the 
PF has been widely used in the fields of navigation, target tracking, fault 
detection, robotic control and computer vision [9,10]. However, with the 
PF, the particle degeneracy phenomenon may occur frequently in the 
approximation process. The approximation process may also diverge if 
a dynamic system has a very small noise or the measurement noise has a 
very small variance [7-10].

Research efforts have focused on studying the problem of 
particle degeneracy in the PF [11-13]. Resampling is the earliest 
method to deal with the problem of particle degeneracy [11]. The 
importance sampling improves the resampling method by adopting 
an important density function to the resampling process [12]. 
However, the re-sampling and important sampling methods result in 
the loss of diversity among particles since particles are drawn from 
a discrete distribution, rather than a continuous distribution. They 
also cause the exhaustion of particles and a large computational 
load. The regularized PF improves the resampling and importance 
sampling methods by resampling the particle set from a continuous 
approximation of the probability density function [13]. However, 
the resultant particles do not share a common distribution with the 
actual probability function, and the variance of state estimation is 
also increased. Markov Chain Monte Carlo (MCMC) is a technique 
to increase the diversity of particles by moving particles to new 
points in the state space [14,15]. It enables particles to be distributed 
according to the desired distribution. The design of a Markov 
transition kernel can also be applied to each particle to prevent a 
large number of posteriorly selected particles from being rejected. 
Therefore, it is necessary to introduce the MCMC technique to the 
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particle regularization process to overcome the problem of particle 
degeneracy and improve the particle distribution.

Currently, most of the existing filtering methods for integrated 
navigation are mainly dominated by the optimal Kalman filter 
[16,17]. The application of a PF in integrated navigation, especially 
in SINS/SAR integrated navigation, is still in infancy. In SINS/
SAR integrated navigation, SINS has small process noise which 
is exponentially unstable. The error caused by system model 
uncertainty is accumulated in the navigation process, decreasing the 
accuracy of the navigation solution. If directly using the PF in SINS/
SAR integrated navigation, it may not only cause the phenomenon of 
particle degeneracy, but it may also keep particles far away from the 
desired sampling area in the state space [18].

This paper presents a modified PF for SINS/SAR integrated 
navigation by using the MCMC technique. This filter is developed 
by incorporating MCMC moves into the regularization process. 
It combines local resampling with MCMC moves to prevent the 
degeneracy of particles and ensure that the resultant particles 
have a common distribution with the actual probability function, 
without causing noise on state estimate. Simulations and 
comparison analysis have been conducted to comprehensively 
evaluate the performance of the proposed filtering method for 
SINS/SAR integrated navigation.

Mathematical Model of SINS/SAR Integrated Navigation

System state equation

The system state vector x(t) of SINS/SAR integrated system is 
defined as

T
0 1 2 3( )  [ , , , , , , , , , , , , , , , ]E N U bx by bz bx by bzt q q q q v v v L hδ δ δ δ δλ δ ε ε ε= ∇ ∇ ∇x   (1)

where (q0, q1, q2, q3) is the attitude error quaternion, (δvE, δvN, δvU) 
the velocity error, (δL, δλ, δh) the position error, (ɛbx, ɛby, ɛbz) the gyro 
constant drift, and ( , , )bx by bz∇ ∇ ∇  (the accelerometer zero bias).

The system state equation is described as

( )  ( ( )) ( ) ( )t f t t t= +x x G w 			              (2)

where f(.) and G(t) are the nonlinear function and noise coefficient 
matrix [19], and w(t) is the process noise described by

T( )  [ , , , , , ]gx gy gz ax ay azt w w w w w w=w 		             (3)

where (wgx, wgy, wgz) is the gyro white noise and (wax, way, waz) is the 
accelerometer white noise.

Measurement equation

Both SINS and SAR can output the position information (latitude, 
longitude, and altitude for SINS and latitude and longitude for SAR) 
and heading angle to position a dynamic vehicle. A barometric 
altimeter is introduced to the SINS/SAR integrated navigation to 
stabilize the altitude of SINS. Based on above, the measurement 
vector is chosen as

[ ] [ ]T T  , , ,k I S I S I S I BL L h h L hφ φ λ λ δφ δ δλ δ= − − − − =y       (4)

where (ϕI, LI, λI, hI) is the heading angle, latitude, longitude and 
altitude of SINS, (ϕS, LS, λS) is the heading angle, latitude and longitude 
of SAR, and hB is the altitude output of the barometric altimeter.

The measurement equation is given as

  ( )k k kh= +y x v  				               (5)

where h(.) is the nonlinear function describing the measurement 
model [19], and vk represents the measurement noises of the SAR and 
barometric altimeter.

Classical Particle Filter
The classical PF [7,8] describes a probability distribution by using 

random samples. Based on noisy measurement data, it approximates 
the actual probability distribution by adjusting the weights of 
particles and the positions of samples to estimate the system states 
in the sense of minimum variance. The key of particle filtering is that 
the posterior probability distribution of a dynamic system state, i.e. 
p(x0:k|y1:k), is calculated by Monte Carlo approximation under noisy 
measurements. Based on importance sampling and resampling 
steps, the objective is to generate an independent sample set which 
has the same distribution as the actual probability function. Since 
it is difficult to draw particles directly from the actual probability 
distribution, particles are drawn sequentially from a proposed 

distribution q(x0:k|y1:k). Denote ( ) ( )( )k
i
kk
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Modified Particle Filter
The PF approximates the posterior distribution function at each 

time point k by using a particle set ( ){ }
1

Ni
kx . However, the particle 

degeneracy phenomenon may occur frequently in the approximation 
process described by (6), as the number of useful particles is 
significantly reduced after a few iterations. This paper adopts MCMC 
moves to the regularization process of particles to overcome this 
problem. A modified PF is developed by combining local resampling 
with MCMC moves to prevent the depletion of particles and enable 
the resultant particles to have the same distribution as the actual 
probability function.

Regularization

The purpose of this step is to generate a new particle set ( ){ }
1

N
i

kx
∗  

by applying a regularization kernel to original particle set ( ){ }
1

Ni
kx . In 

order to do so, the set of particles is resampled according to a continuous 
approximation of actual probability density function cp̂  instead of (6) in 
the classical PF

( ) ( ) ( )( )1:
1
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N
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c k k k h k k

i
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=
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Where Kh is the scaled kernel described by
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                        (8)

where h is the bandwidth, xn  is the size of the state vector, and 
S = AAT is the covariance matrix. K is the kernel density, which is 

symmetric and satisfies ( ) 1K x dx =∫  and 
2

( )x K x dx < ∞∫ .

If the probability density is a single-peaked curve, the derived 
optimal bandwidth is

( )( )
11

44  4 / 2 xx
nn

opt xh n N
−

++= −  		             (9)

The case of multimodal density models can be handled by 
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choosing h = hopt∕2.

Metropolis-Hastings (M-H) rules

The regularization technique, which is used in the regularized 
PF, is to replace the discrete approximation by a continuous 
approximation in a window to increase the diversity of particles [13]. 
However, the particles are no longer distributed according to the 
target distribution but the non-parametric approximation, leading to 
the increase in the variance of state estimate. The proposed method 
addresses this problem by combining MCMC moves into the particle 
regularization process. It develops the Metropolis-Hastings rules 
to accept/reject the particles updated by the regularization process, 
ensuring that selected particles are distributed according to the target 
distribution.

In this step, a new particle trajectory ( ){ }0:
1

N
i

kx
∗

 is generated by 

extracting L-1 particles (L is a positive integer) from the original 

particle set ( ){ }
1

Ni
kx , leaving the remaining particles unchanged. The 

new particle trajectory is accepted or rejected according to the M-H 
rules.

For the sake of conciseness, the particles in the original particle 
set ( )

1
i

kx −  are called the parent particles, while the particles in the 

new particle set ( )i
kx
∗

 are called the child particles. Due to the small 

noise process of SINS, the parent particles may be discarded, thus 

leading to the rejection of trajectory ( )( ) ( )
0: 1,i i

k kx x
∗

−  by the M-H 

rules. To overcome this problem, a local resampling step is utilized 

to generate a new trajectory. The new trajectory ( )
0 :  is generated 

by updating L-1 particles ( )
: 1

i
k L kx − −  through resampling. Since only 

L-1 particles are resampled, the MCMC moves do not cause any extra 
computational load. The new trajectory consists of three components

( )( ) ( ) ( ) ( )
0: : 1 0: 1  , ,i i i i
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where ( )i
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∗

 is generated by a kernel approximation, ( )
: 1k L k− −
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, and ( )

0: 1
i
k lx − −  is a portion of the 

original trajectory.

The local sampling step enables the new particle trajectory to 
sufficiently approximate the actual distribution, thus increasing the 
acceptance rate of the M-H rules. According to the M-H rules, the 
acceptance probability of the ith trajectory is

( ) ( ){ }( ) ( ) ( ) ( )
0: 0: 0: 0:  min 1,i i i i

k k k kx x x xϕ β′ ′=   (11)

where β is the acceptance rate, which is represented as
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Where q is the proposed distribution.

As the candidate trajectories are coincident with each other from 
time 0 to time k- L -1, the following result can be obtained
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The distribution q is the contribution of the regularization and 
the local resampling process. As the Gaussian regularization Kernel is 
symmetric, the proposed distribution ratio is reduced to

( )
( )
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It can be seen from the above analysis that the M-H rules together 
with local resampling increase the acceptance rate and guarantee 
the resultant particle trajectory is distributed according to the target 
distribution, thus overcoming the limitation of the regularized PF.

Performance Evaluation and Discussions
Simulations were conducted to evaluate and analyze the 

         

Figure 1: Flight trajectory.
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which involves different flight states such as accelerating, climbing 
and turning states (Figure 1), was designed according to the actual 
flight process of an ASN 206 reconnaissance UAV. The navigation 
frame was chosen as the E-N-U (East-North-Up) geography 
frame. The aircraft was initially at North latitude 34.2°, East 

performance of the modified PF for SINS/SAR integrated navigation. 
The comparison analysis of the modified PF with the classical PF and 
regularized PF [13] is also discussed in this section.

In order to analyze the performance of the proposed method 
under flexible and high speed flying conditions, the flight trajectory, 

         

Figure 2: Attitude errors obtained by the classical PF, regularized PF and modified PF.
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attitude error (1.2', 1.2', 1.5'). The end position of the UAV was at 
North latitude 34.8°, East longitude 110.6° and altitude 2748 m. 
The UAV maximum speed and altitude were 190 km/h and 5875 
m. The UAV flight time and distance were 1000 s and 28 km. The 
detailed simulation parameters are listed in Table 1.

longitude 108.9°, and altitude 2000 m. Its velocity at the initial 
position was 0 m/s, 100 m/s and 0 m/s in East, North, and Up, 
respectively. Its initial orientation was assumed to be parallel to 
the navigation frame. The initial position error was (10 m, 10 m, 
15 m), initial velocity error (0.8 m/s, 0.8 m/s, 0.8 m/s) and initial 

         

Figure 3: Position errors obtained by the classical PF, regularized PF and modified PF.
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The above simulations and analysis demonstrate the proposed 
modified PF overcomes the limitation of the classical PF in terms 
of the degeneracy problem of particles. The achieved navigation 
accuracy for SINS/SAR integrated navigation is also much higher 
than that of the classical PF and regularized PF.

Conclusions
This paper presents a modified PF for SINS/SAR integrated 

navigation. The MCMC technique combined with local resampling is 
developed and incorporated in the regularization process of particles 
to prevent particle degeneracy and ensure that the resultant particles 
have a common distribution with the actual probability function 
without causing additional noise on state estimate. Simulation results 
demonstrate that the proposed method overcomes the problem of 
particle degeneracy in the classical PF, and its accuracy for SINS/SAR 
integrated navigation is much higher than that of the classical PF and 
regularized PF.

Future research work will focus on the improvement of the 
proposed modified PF by using artificial intelligence. Advanced expert 
systems and neural networks will be established to automatically and 
adaptively adjust the size of sample sets during the estimation process 
according to estimation variance.
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